Meliponiculture, the keeping of domesticated stingless bees such as Geniotrigona thoracica (Smith, 1857) (Hymenoptera: Apidae), is an increasingly popular agricultural industry in Malaysia. This study reports the soldier fly (Diptera: Stratiomyidae) species of the genus Hermetia colonizing stingless bee colonies in Malaysia. The larvae were reared in the laboratory to the adult stage and identified through molecular and morphological approaches. Hermetia illucens (Linnaeus, 1758) and Hermetia fenestrata de Meijere, 1904 (Diptera: Stratiomyidae) were identified from the sample provided. Earlier records of stratiomyids in stingless bee nests were misidentified as H. illucens. This paper represents the first identified record of H. fenestrata colonizing a "spoiled" stingless bee colony. In addition, adult and larval morphological differences between both species and the roles of both species in bee nest decomposition are discussed.
A basic tenet of forensic entomology is development data of an insect can be used to predict the time of colonization (TOC) by insect specimens collected from remains, and this prediction is related to the time of death and/or time of placement (TOP). However, few datasets have been evaluated to determine their accuracy or precision. The black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) is recognized as an insect of forensic importance. This study examined the accuracy and precision of several development datasets for the black soldier fly by estimating the TOP of five sets of human and three sets of swine remains in San Marcos and College Station, TX, respectively. Data generated from this study indicate only one of these datasets consistently (time-to-prepupae 52%; time-to-eclosion 75%) produced TOP estimations that occurred within a day of the actual TOP of the remains. It is unknown if the precolonization interval (PreCI) of this species is long, but it has been observed that the species can colonize within 6 d after death. This assumption remains untested by validation studies. Accounting for this PreCI improved accuracy for the time-to-prepupae group, but reduced accuracy in the time-to-eclosion group. The findings presented here highlight a need for detailed, forensic-based development data for the black soldier fly that can reliably and accurately be used in casework. Finally, this study outlines the need for a basic understanding of the timing of resource utilization (i.e., duration of the PreCI) for forensically relevant taxa so that reasonable corrections may be made to TOC as related to minimum postmortem interval (mPMI) estimates.