Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Jasmi AH, Ahmad AH
    Insects, 2011;2(4):469-74.
    PMID: 26467826 DOI: 10.3390/insects2040469
    A study was carried out to evaluate the incidence of termite attack on an Araucaria cunninghamii plantation at Teluk Bahang Forest Park (TBFP), Penang. The hilly plantation area was surveyed to determine the diversity of termite species present. Termite specimens were collected from standin Araucaria trees, underground monitoring (aggregation) stations, fallen logs, forest litter and mounds (nests). Seven species of termites were identified from 6 genera; Coptotermes curvignathus, Schedorhinotermes medioobscurus, Schedorhinotermes malaccensis, Odontotermes sarawakensis Parrhinotermes aequalis, Macrotermes malaccensis and Hospitalitermes hospitalis. A total of 289 Araucaria trees were inspected for signs of termite attack. Termite infestation of trees was determined mainly by the presence of mud on the trunk, but particularly around their butts at ground line. The most dominant termite species discovered infesting the Araucaria trees was Coptotermes curvignathus; accountable for 74% of all infestations. Schedorhinotermes medioobscurus and Odontotermes sarawakensis were commonly found infesting dead trees and/or tree stumps. Approximately 21.5% of all Araucaria trees in the plantation forest at Teluk Bahang were infested by termites.
  2. Ahmed JB, Salisu A, Pradhan B, Alamri AM
    Insects, 2020 Oct 24;11(11).
    PMID: 33114307 DOI: 10.3390/insects11110728
    Termite nests have long been suggested to be good indicators of groundwater but only a few studies are available to demonstrate the relationship between the two. This study therefore aims at investigating the most favourable spots for locating groundwater structures on a small parcel of land with conspicuous termite activity. To achieve this, geophysical soundings using the renowned vertical electrical sounding (VES) technique was carried out on the gridded study area. A total of nine VESs with one at the foot of a termitarium were conducted. The VES results were interpreted and assessed via two different techniques: (1) physical evaluation as performed by drillers in the field and (2) integration of primary and secondary geoelectrical parameters in a geographic information system (GIS). The result of the physical evaluation indicated a clear case of subjectivity in the interpretation but was consistent with the choice of VES points 1 and 6 (termitarium location) as being the most prospective points to be considered for drilling. Similarly, the integration of the geoelectrical parameters led to the mapping of the most prospective groundwater portion of the study area with the termitarium chiefly in the center of the most suitable region. This shows that termitaria are valuable landscape features that can be employed as biomarkers in the search of groundwater.
  3. Boyle JH, Rastas PMA, Huang X, Garner AG, Vythilingam I, Armbruster PA
    Insects, 2021 Feb 16;12(2).
    PMID: 33669192 DOI: 10.3390/insects12020167
    The Asian tiger mosquito, Aedes albopictus, is an invasive vector mosquito of substantial public health concern. The large genome size (~1.19-1.28 Gb by cytofluorometric estimates), comprised of ~68% repetitive DNA sequences, has made it difficult to produce a high-quality genome assembly for this species. We constructed a high-density linkage map for Ae. albopictus based on 111,328 informative SNPs obtained by RNAseq. We then performed a linkage-map anchored reassembly of AalbF2, the genome assembly produced by Palatini et al. (2020). Our reassembled genome sequence, AalbF3, represents several improvements relative to AalbF2. First, the size of the AalbF3 assembly is 1.45 Gb, almost half the size of AalbF2. Furthermore, relative to AalbF2, AalbF3 contains a higher proportion of complete and single-copy BUSCO genes (84.3%) and a higher proportion of aligned RNAseq reads that map concordantly to a single location of the genome (46%). We demonstrate the utility of AalbF3 by using it as a reference for a bulk-segregant-based comparative genomics analysis that identifies chromosomal regions with clusters of candidate SNPs putatively associated with photoperiodic diapause, a crucial ecological adaptation underpinning the rapid range expansion and climatic adaptation of A. albopictus.
  4. Fahimee J, Badrulisham AS, Zulidzham MS, Reward NF, Muzammil N, Jajuli R, et al.
    Insects, 2021 Feb 28;12(3).
    PMID: 33671045 DOI: 10.3390/insects12030205
    Honey quality is the main criterion used for evaluating honey production in the stingless bee Heterotrigona itama, and it is correlated with the plant species consumed as its main diet. The objective of this study was to obtain the metabarcode data from 12 populations of H. itama species throughout Malaysia (Borneo and Peninsular Malaysia) using the trnL marker. A total of 262 species under 70 families and five phyla of plants were foraged by H. itama in the studied populations. Spermatophyta and Magnoliophyta were recorded as the two most abundant phyla foraged, at 55.95% and 32.39%, respectively. Four species, Garcinia oblongifolia, Muntingia calabura, Mallotus pellatus, and Pinus squamata, occurred abundantly and were consumed by H. itama in all the populations. These data are considered as a fundamental finding that is specific to the diet of H. itama for strategizing the management of the domestication process specifically in a mono-cropping system and in a netted structure. Thus, based on these findings, we recommend Momordica charantia, Melastoma sp., and Cucumis sativa as the best choices of food plant species to be planted and utilized by H. itama in meliponiculture.
  5. Swaray S, Y Rafii M, Din Amiruddin M, Firdaus Ismail M, Jamian S, Jalloh M, et al.
    Insects, 2021 Mar 04;12(3).
    PMID: 33806613 DOI: 10.3390/insects12030221
    This study was conducted to assess the Elaeidobius kamerunicus (EK) population density among the biparental dura × pisifera hybrids' palms on deep peat-soil. Twenty-four hybrids derived from 10 genetic sources were used. Variance analysis showed that the EK population density varies between different oil palm hybrids, with a more noticeable variation of a low population mean in the male weevil across the hybrids. The highest weevil population mean/spikelet was attained on the third day of anthesis. The maximum monthly population of EK/spikelet (12.81 ± 0.23) and population density of EK (1846.49 ± 60.69) were recorded in January. Accordingly, 41.67% of the hybrids recorded an EK population density greater than the trial means of 973.68 weevils. Hybrid ECPHP550 had the highest mean of EK/spikelet (10.25 ± 0.11) and the highest population density of EK/palm (1241.39 ± 73.74). The parental mean population was 963.24 weevils and parent Deli-Banting × AVROS recorded the highest EK population density (1173.01). The overall results showed a notable disparity in the EK population among the biparental hybrids. Parental Deli-Banting × AVROS and hybrid ECPHP550 could be more useful to optimize the weevil population for pollination improvements in palm plantations. However, we suggest that volatile production should be included as a desirable trait in oil palm selective breeding.
  6. Ivorra T, Hauser M, Low VL, Tomberlin JK, Aliah NAN, Cammack JA, et al.
    Insects, 2020 Oct 27;11(11).
    PMID: 33121084 DOI: 10.3390/insects11110737
    Meliponiculture, the keeping of domesticated stingless bees such as Geniotrigona thoracica (Smith, 1857) (Hymenoptera: Apidae), is an increasingly popular agricultural industry in Malaysia. This study reports the soldier fly (Diptera: Stratiomyidae) species of the genus Hermetia colonizing stingless bee colonies in Malaysia. The larvae were reared in the laboratory to the adult stage and identified through molecular and morphological approaches. Hermetia illucens (Linnaeus, 1758) and Hermetia fenestrata de Meijere, 1904 (Diptera: Stratiomyidae) were identified from the sample provided. Earlier records of stratiomyids in stingless bee nests were misidentified as H. illucens. This paper represents the first identified record of H. fenestrata colonizing a "spoiled" stingless bee colony. In addition, adult and larval morphological differences between both species and the roles of both species in bee nest decomposition are discussed.
  7. Allman MJ, Fraser JE, Ritchie SA, Joubert DA, Simmons CP, Flores HA
    Insects, 2020 Oct 27;11(11).
    PMID: 33120915 DOI: 10.3390/insects11110735
    The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia's negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
  8. Wan Mohammad WNF, Soh LS, Wan Ismail WN, Veera Singham G
    Insects, 2020 Jul 25;11(8).
    PMID: 32722487 DOI: 10.3390/insects11080472
    The tropical bed bug, Cimex hemipterus (F.), has now emerged as an important public health pest in the tropics. Despite its alarming infestation rate, the information on its population genetics remains scarce. Here, we described the infestation structure and population dynamics of C. hemipterus in the tropics, especially Malaysia and Singapore, based on eight novel microsatellites and two mtDNA markers, including cytochrome c oxidase I (COI) and 16S rRNA genes. Across populations, microsatellite data revealed high genetic diversity with significant genetic differentiation and restricted gene flow. Analysis within populations revealed evidence of a recent bottleneck. Nonetheless, elevated genetic diversity in nearly all populations suggests that the propagule in C. hemipterus populations were much diverse, distantly related (mean r = 0.373), and not significantly inbred (mean FIS = 0.24) than that observed in Cimex lectularius from previous studies. We observed seven mtDNA haplotypes across the 18 populations studied (Hd = 0.593) and several populations displayed more than one matrilineal descent. The two markers were generally congruent in suggesting a common, genetically diverse (especially at the nuclear region) source population with possibilities of multiple introductions for the bed bug populations in the present study.
  9. Harith-Fadzilah N, Haris-Hussain M, Abd Ghani I, Zakaria A, Amit S, Zainal Z, et al.
    Insects, 2020 Jun 30;11(7).
    PMID: 32630104 DOI: 10.3390/insects11070407
    The red palm weevil (RPW) is a stem boring Coleoptera that decimates host palm trees from within. The challenge of managing this pest is due to a lack of physical symptoms during the early stages of infestation. Investigating the physiological changes that occur within RPW-infested palm trees may be useful in establishing a new approach in RPW detection. In this study, the effects of RPW infestation were investigated in Elaeis guineensis by observing changes in physical and physiological parameters during the progress of infestation by visual inspection and the comparison of growth, gas exchange, stomatal conductance, and chlorophyll content between the non-infested control, physically wounded, and RPW-infested E. guineensis groups. During the study period, four distinct levels of physical infestation were observed and recorded. The RPW-infested group displayed significantly lower maximum photosynthesis activity (Amax) starting from the third week post-infestation. However, growth in terms of change in plant height and stem circumference, leaves' stomatal conductance, and chlorophyll content were not significantly different between the three groups during the duration of the study. The significant drop in photosynthesis was observed one week before physical changes appeared. This suggests the promising utilisation of photosynthesis activity as a signal for detecting RPW infestation at the early stage of attacks, which could be useful for integration in integrated pest management (IPM).
  10. Srisuka W, Sulin C, Aupalee K, Phankaen T, Taai K, Thongsahuan S, et al.
    Insects, 2021 May 31;12(6).
    PMID: 34072677 DOI: 10.3390/insects12060504
    Black flies form a group of small blood-sucking insects of medical and veterinary importance. This study aimed to investigate the community structure, biodiversity and spatial and temporal distribution of adult black flies in tropical rain forests, by using malaise traps in Doi Inthanon National Park, northern Thailand. Malaise traps were placed along six elevational gradients (400 m to 2500 m, above sea level) at Doi Inthanon National Park, Chiang Mai province, from December 2013 to November 2014. A total of 9406 adult female black flies belonging to five subgenera-Daviesellum (2%), Gomphostilbia (23%), Montisimulium (11%), Nevermannia (16%) and Simulium (48%)-were collected. Among 44 taxa found, S. tenebrosum complex had the highest relative abundance (11.1%), followed by the S. asakoae species-group (9.6%), the S. striatum species-group (7.7%), S. inthanonense (6.6%), S. doipuiense complex (6.4%), S. chomthongense complex (5.3%), S. chumpornense (5.1%) and S. nigrogilvum (4.1%). Two human-biting species-S. nigrogilvum and species in the S. asakoae species-group-were found in all of the collection sites with 100% species occurrence. Species richness was highest at mid elevation (1400 m), which is represented by 19 black fly species. The peak and lowest seasonal abundance was observed in the rainy and hot season, respectively. Seasonal species richness was highest in the cold season, except for that from elevation sites at 700 m, 1700 m and 2500 m. This study revealed that the malaise trap is effective in providing important data for further monitoring of the effects of environmental changes and conservation planning on the biodiversity of black flies in Doi Inthanon National Park.
  11. Yan TK, Asari A, Salleh SA, Azmi WA
    Insects, 2021 Jun 13;12(6).
    PMID: 34199269 DOI: 10.3390/insects12060551
    Coconut palms in Malaysia are infested by a destructive invasive pest, RPW since 2007, and the pest's population is difficult to control. At present, RPW control management mainly relies on the use of monocrotophos, which is administered by the trunk injection method. However, this pesticide can negatively impact human health and the ecosystem. Plant EO that can be used as a bio-pesticide is highly recommended as an alternative to monocrotophos because of its target-specific and eco-friendly properties. The antifeedant activity of eight eugenol and thymol derivatives from clove and thyme EOs were tested against the fourth instar larvae of RPW through oral bioassay for 14 days. Relative growth rate (RGR), relative consumption rate (RCR), the efficiency of conversion of ingested food (ECI), and the feeding deterrent index (FDI) were compared and analyzed. All of the derivatives showed antifeedant activity, particularly the eugenol derivative, 4-allyl-2-methoxy-1-(4-trifluoromethyl-benzyloxy)-benzene (FDI = 54.14%) and the thymol derivative, 2-isopropyl-4-methyl-2-((4-nitrobenzyl) oxy) benzene (FDI = 53.88%). Both of them showed promising results on their ability to be the most effective antifeedant agents in each derivative group. There was no significant difference in the effectiveness of the eugenol-based and thymol-based derivatives, but the ether derivative group (FDI = 45.63%) had a significantly stronger effect than the ester derivative group (FDI = 39.71%). This study revealed that the compound in ether form is more effective than the compound in ester form as an antifeedant agent against RPW larvae, regardless of the plant EO that the compound is derived from.
  12. Shettima A, Joseph S, Ishak IH, Abdul Raiz SH, Abu Hasan H, Othman N
    Insects, 2021 Aug 20;12(8).
    PMID: 34442320 DOI: 10.3390/insects12080752
    Aedes aegypti is a significant vector for many tropical and subtropical flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. This study explored the total proteomes of females and males based on the physiological and genetic differences of female and male mosquitoes. Protein extracts from mosquitoes were analysed using LC-ESI-MS/MS for protein identification, protein interaction network analysis, functional ontology enrichment, and differential protein abundance analyses. Protein identification revealed 422 and 682 proteins exclusive to males and females, respectively, with 608 common proteins found in both sexes. The most significant PPIs (<1.0 × 10-16) were for common proteins, followed by proteins exclusive to females (<1.0 × 10-16) and males (1.58 × 10-12). Significant functional enrichments were observed in the biological process, molecular function, and cellular component for the male and female proteins. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. Overall, the study verified the total proteomes differences between male and female Ae. aegypti based on protein identification and interactions, functional ontologies, and differentially abundant proteins. Some of the identified proteins merit further investigation to elucidate their roles in blocking viral transmission.
  13. Foo K, Sathiya Seelan JS, Dawood MM
    Insects, 2017 Jul 04;8(3).
    PMID: 28677633 DOI: 10.3390/insects8030066
    Overlooking the importance of insect disease can have disastrous effects on insect conservation. This study reported the microfungi that infect Pteroptyx bearni eggs and larvae during ex-situ rearing project. Two different species of microfungi that infected the firefly's immature life stages were isolated and identified. Penicillium citrinum infected the firefly's eggs while Trichoderma harzianum infected the firefly during the larval stage. Both microfungi species caused absolute mortality once infection was observed; out of 244 individual eggs collected, 75 eggs (32.5%) were infected by Penicillium citrinum. All 13 larvae that hatched from the uninfected eggs were infected by Trichoderma harzianum. This study was the first to document the infection of Pteroptyx bearni's eggs and larvae by Penicillium citrinum and Trichoderma harzianum.
  14. Leong SS, Leong SCT, Beattie GAC
    Insects, 2022 Oct 20;13(10).
    PMID: 36292909 DOI: 10.3390/insects13100960
    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits ‘Candidatus Liberibacter asiaticus’ (CLas), a phloem-limited bacterium associated with the severe Asian form of huanglongbing (HLB), and the most destructive disease of citrus. The pathogen and the psyllid, both of South Asian origin, are now widespread in citrus regions of Asia and the Americas. There is no cure for the disease. Application of synthetic pesticides, in some instances more frequently than fortnightly, to minimise incidence of ACP in citrus orchards, has not prevented inevitable impacts of the disease in regions of Asia where CLas is present. Despite the inevitable spread of the disease, significant progress has been made in Sarawak since the mid-1990s towards effectively implementing integrated pest management (IPM) programs for stemming the impact of the disease and detrimental consequences of over-reliance on synthetic pesticides. Growers are encouraged to plant pathogen-free trees, remove diseased trees, monitor incidence of the psyllid, and to use pesticides judiciously to reduce their detrimental impacts on natural enemies. Knowledge has been enhanced through research on seasonal incidence of the psyllid, use of mineral oils, development of protocols and iodine−starch test kits for detecting infected trees, PCR for confirming the presence of CLas in symptomatic leaves, methods for monitoring incidence the psyllid, and training extension staff and growers. However, major impediments to increasing the average longevity of trees beyond <5 years in poorly managed orchards, based on marcotting (air layering), and >12 years in well-managed orchards, based on pathogen-free trees, still need to be addressed. These include grower knowledge, marcotting, aggressive marketing of synthetic pesticides, high prices of mineral oils, spray application procedures, and better reliance on natural enemies of the psyllid.
  15. Basari N, Ramli SN, Mohd Khairi N'S
    Insects, 2018 Oct 11;9(4).
    PMID: 30314344 DOI: 10.3390/insects9040138
    Beekeeping with stingless bee provides new opportunities to improve the incomes of many households in Malaysia through the sale of honey and other bee products. While Heterotrigona itama is one of the most commonly cultured species of stingless bees, its behavior is not very well understood. Hence, we conducted this study to investigate the behavior of H. itama in exploiting food sources by ascertaining the nectar sugar concentration preferred by the bee. We also aimed to determine the preferred distance of food source from the beehive. Our results suggest that H. itama prefers high sugar concentrations of 35% and above, and most of the bees preferred to forage close to their hive to collect food. We discuss how nectar concentration, food distance, and abiotic factors influence the number of bees exploiting food sources and the overall foraging pattern of H. itama.
  16. Ono H, Hee AK, Jiang H
    Insects, 2021 Jan 26;12(2).
    PMID: 33530622 DOI: 10.3390/insects12020106
    Dacini fruit flies mainly contain two genera, Bactrocera and Zeugodacus, and include many important pests of fruits and vegetables. Their life cycle is affected by various environmental cues. Among them, multiple characteristic semiochemicals have remarkable effects on their reproductive and host-finding behaviors. Notably, floral fragrances released from so-called fruit fly orchids strongly attract males of several Dacini fruit fly species. Focusing on the strong attraction of male flies to particular chemicals, natural and synthetic lures have been used for pest management. Thus, the perception of semiochemicals is important to understand environmental adaptation in Dacini fruit flies. Since next-generation sequencers are available, a large number of chemosensory-related genes have been identified in Dacini fruit flies, as well as other insects. Furthermore, recent studies have succeeded in the functional analyses of olfactory receptors in response to semiochemicals. Thus, characterization of molecular components required for chemoreception is under way. However, the mechanisms underlying chemoreception remain largely unknown. This paper reviews recent findings on peripheral mechanisms in the perception of odors in Dacini fruit flies, describing related studies in other dipteran species, mainly the model insect Drosophilamelanogaster. Based on the review, important themes for future research have also been discussed.
  17. Othman NW, Barron AB, Cooper PD
    Insects, 2023 May 25;14(6).
    PMID: 37367311 DOI: 10.3390/insects14060495
    The salivary gland of the black field cricket, Teleogryllus commodus Walker changed size between being starved and fed. Crickets without access to food for 72 h showed a reduction in both wet and dry mass of the glands compared with the glands from continuously fed animals at 72 h. Glands returned to size following ingestion within 10 min. Salivary glands of starved crickets (72 h) were incubated in saline containing either serotonin (5-HT) or dopamine (DA). Glands increased to pre-starvation size after 1 h incubation in situ with either 10-4 moles L-1 5-HT or 10-4 moles L-1 DA, although lower concentrations (10-5 moles L-1) did not affect gland size. From immunohistochemistry, amines appeared to shift from zymogen cells during starvation to parietal cells following feeding. High-performance liquid chromatography showed that serotonin concentration is higher than dopamine in the salivary gland removed from starved and fed crickets, but the quantity of these compounds was not dependent upon feeding state; the amine quantities increased as gland size increased. Further work is necessary to determine what might be the stimulus for gland growth and if dopamine and serotonin play a role in the stimulation of salivary gland growth after a period of starvation.
  18. Ngah N, Thomas RL, Shaw MW, Fellowes MDE
    Insects, 2018 Jul 06;9(3).
    PMID: 29986404 DOI: 10.3390/insects9030080
    Plant pathogens can profoundly affect host plant quality as perceived by their insect herbivores, with potentially far-reaching implications for the ecology and structure of insect communities. Changes in host plants may have direct effects on the life-histories of their insect herbivores, which can then influence their value as prey to their natural enemies. While there have been many studies that have explored the effects of infection when plants show symptoms of disease, little is understood about how unexpressed infection may affect interactions at higher trophic levels. We examined how systemic, asymptomatic, and seed-borne infection by the ubiquitous plant pathogen Botrytis cinerea, infecting two varieties of the lettuce Lactuca sativa, affected aphids (the green peach aphid, Myzus persicae) and two widely used biocontrol agents (the parasitoid Aphidius colemani and the ladybird predator Adalia bipunctata). Lettuce varieties differed in host plant quality. Asymptomatic infection reduced chlorophyll content and dry weight of host plants, irrespective of plant variety. Aphids reared on asymptomatic plants were smaller, had reduced off-plant survival time and were less fecund than aphids reared on uninfected plants. Parasitoids showed reduced attack rates on asymptomatically infected plants, and wasps emerging from hosts reared on such plants were smaller and showed reduced starvation resistance. When given a choice in an olfactometer, aphids preferentially chose uninfected plants of one variety (Tom Thumb) but showed no preference with the second (Little Gem) variety. Parasitoids preferentially chose aphids on uninfected plants, irrespective of host plant variety, but ladybirds did not show any such preference. These results suggest that the reduced quality of plants asymptomatically infected by Botrytis cinerea negatively affects the life history of aphids and their parasitoids, and alters the behaviors of aphids and parasitoids, but not of ladybirds. Fungal pathogens are ubiquitous in nature, and this work shows that even when host plants are yet to show symptoms, pathogens can affect interactions between insect herbivores and their natural enemies. This is likely to have important implications for the success of biological control programs.
  19. Drosopoulou E, Syllas A, Goutakoli P, Zisiadis GA, Konstantinou T, Pangea D, et al.
    Insects, 2019 Nov 28;10(12).
    PMID: 31795125 DOI: 10.3390/insects10120429
    Bactrocera carambolae is one of the approximately 100 sibling species of the Bactrocera dorsalis complex and considered to be very closely related to B. dorsalis. Due to their high morphological similarity and overlapping distribution, as well as to their economic impact and quarantine status, the development of reliable markers for species delimitation between the two taxa is of great importance. Here we present the complete mitochondrial genome of B. carambolae sourced from its native range in Malaysia and its invaded territory in Suriname. The mitogenome of B. carambolae presents the typical organization of an insect mitochondrion. Comparisons of the analyzed B. carambolae sequences to all available complete mitochondrial sequences of B. dorsalis revealed several species-specific polymorphic sites. Phylogenetic analysis based on Bactrocera mitogenomes supports that B. carambolae is a differentiated taxon though closely related to B. dorsalis. The present complete mitochondrial sequences of B. carambolae could be used, in the frame of Integrative Taxonomy, for species discrimination and resolution of the phylogenetic relationships within this taxonomically challenging complex, which would facilitate the application of species-specific population suppression strategies, such as the sterile insect technique.
  20. Gisondi S, Pape T, Shima H, Cerretti P
    Insects, 2020 Nov 12;11(11).
    PMID: 33198258 DOI: 10.3390/insects11110792
    Three new species of Rhinophoridae (Aporeomyia elaphocerasp. nov., Baniassa pennatasp. nov. from the Oriental Region, and Phyto mambillasp. nov. from the Afrotropical Region) are described, illustrated and compared with congeners. Genus-level affiliation of the new species is based on a morphology-based phylogeny, preliminarily accepting a paraphyletic Phyto Robineau-Desvoidy awaiting incorporation of molecular data. Keys to the species of the genus Aporeomyia Pape & Shima as well as to the Afrotropical species of the genus Phyto Robineau-Desvoidy are given.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links