OBJECTIVE: The purpose of this report was to describe the prespecified long-term safety objective of Micra at 12 months and electrical performance through 24 months.
METHODS: The Micra Transcatheter Pacing Study was a prospective single-arm study designed to assess the safety and efficacy of the Micra VVIR leadless/intracardiac pacemaker. Enrolled patients met class I or II guideline recommendations for de novo ventricular pacing. The long-term safety objective was freedom from a system- or procedure-related major complication at 12 months. A predefined historical control group of 2667 patients with transvenous pacemakers was used to compare major complication rates.
RESULTS: The long-term safety objective was achieved with a freedom from major complication rate of 96.0% at 12 months (95% confidence interval 94.2%-97.2%; P < .0001 vs performance goal). The risk of major complications for patients with Micra (N = 726) was 48% lower than that for patients with transvenous systems through 12 months postimplant (hazard ratio 0.52; 95% confidence interval 0.35-0.77; P = .001). Across subgroups of age, sex, and comorbidities, Micra reduced the risk of major complications compared to transvenous systems. Electrical performance was excellent through 24 months, with a projected battery longevity of 12.1 years.
CONCLUSION: Long-term performance of the Micra transcatheter pacemaker remains consistent with previously reported data. Few patients experienced major complications through 12 months of follow-up, and all patient subgroups benefited as compared to transvenous pacemaker historical control group.
OBJECTIVE: The purpose of this study was to describe the natural history of acute elevated Micra vs traditional transvenous lead thresholds.
METHODS: Micra study VVI patients with threshold data (at 0.24 ms) at implant (n = 711) were compared with Capture study patients with de novo transvenous leads at 0.4 ms (n = 538). In both cohorts, high thresholds were defined as >1.0 V and very high as >1.5 V. Change in pacing threshold (0-6 months) with high (1.0 to ≤1.5 V) or very high (>1.5 V) thresholds were compared using the Wilcoxon signed-rank test.
RESULTS: Of the 711 Micra patients, 83 (11.7%) had an implant threshold of >1.0 V at 0.24 ms. Of the 538 Capture patients, 50 (9.3%) had an implant threshold of >1.0 V at 0.40 ms. There were no significant differences in patient characteristics between those with and without an implant threshold of >1.0 V, with the exception of left ventricular ejection fraction in the Capture cohort (high vs low thresholds, 53% vs 58%; P = .011). Patients with an implant threshold of >1.0 V decreased significantly (P < .001) in both cohorts. Micra patients with high and very high thresholds decreased significantly (P < .01) by 1 month, with 87% and 85% having 6-month thresholds lower than the implant value. However, when the capture threshold at implant was >2 V, only 18.2% had a threshold of ≤1 V at 6 months and 45.5% had a capture threshold of >2 V.
CONCLUSIONS: Pacing thresholds in most Micra patients with elevated thresholds decrease after implant. Micra device repositioning may not be necessary if the pacing threshold is ≤2 V.