Displaying 1 publication

Abstract:
Sort:
  1. Iranpour F, Merican AM, Teo SH, Cobb JP, Amis AA
    Knee, 2017 Jun;24(3):555-563.
    PMID: 28330756 DOI: 10.1016/j.knee.2017.01.011
    BACKGROUND: Patellofemoral instability is a major cause of anterior knee pain. The aim of this study was to examine how the medial and lateral stability of the patellofemoral joint in the normal knee changes with knee flexion and measure its relationship to differences in femoral trochlear geometry.

    METHODS: Twelve fresh-frozen cadaveric knees were used. Five components of the quadriceps and the iliotibial band were loaded physiologically with 175N and 30N, respectively. The force required to displace the patella 10mm laterally and medially at 0°, 20°, 30°, 60° and 90° knee flexion was measured. Patellofemoral contact points at these knee flexion angles were marked. The trochlea cartilage geometry at these flexion angles was visualized by Computed Tomography imaging of the femora in air with no overlying tissue. The sulcus, medial and lateral facet angles were measured. The facet angles were measured relative to the posterior condylar datum.

    RESULTS: The lateral facet slope decreased progressively with flexion from 23°±3° (mean±S.D.) at 0° to 17±5° at 90°. While the medial facet angle increased progressively from 8°±8° to 36°±9° between 0° and 90°. Patellar lateral stability varied from 96±22N at 0°, to 77±23N at 20°, then to 101±27N at 90° knee flexion. Medial stability varied from 74±20N at 0° to 170±21N at 90°. There were significant correlations between the sulcus angle and the medial facet angle with medial stability (r=0.78, p<0.0001).

    CONCLUSIONS: These results provide objective evidence relating the changes of femoral profile geometry with knee flexion to patellofemoral stability.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links