Displaying all 2 publications

Abstract:
Sort:
  1. Dahlan ND, Gital YY
    Appl Ergon, 2016 May;54:169-76.
    PMID: 26851476 DOI: 10.1016/j.apergo.2015.12.008
    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal sensation immediately after a down-step thermal transition (≤ 1 min exposure duration) for people living in a hot-humid climate country.
  2. Sithravel R, Ibrahim R, Lye MS, Perimal EK, Ibrahim N, Dahlan ND
    PLoS One, 2018;13(11):e0207488.
    PMID: 30496193 DOI: 10.1371/journal.pone.0207488
    Workplace architectural lighting conditions that are biologically dim during the day are causing healthy individuals to experience light-induced health and performance-related problems. Dynamic lighting was reported beneficial in supporting individuals' psychological behavior and physiological responses during work period in Europe. It has yet to be investigated in workplaces with minimal/no natural daylight contribution in tropical Malaysia. Hence, an exploratory experimental study was initiated in an experimental windowless open-plan workplace in Universiti Putra Malaysia, Serdang. The aim was to identify dynamic lighting configurations that were more supportive of a morning boosting effect than the control constant lighting, to support dayshift individuals' psychophysiological wellbeing indicators during the peak morning work period. The immediate impact of a 2-hour morning exposure to overhead white LED (6500 K) with different horizontal illuminance levels and oscillations (lighting patterns) were investigated on physiological indicator limited to urinary 6-sulfatoxymelatonin, and psychological indicators for alertness, mood, visual comfort, cognitive and visual task performance. Not all of the investigated dynamic lighting configurations were supportive of a morning boost. Only configurations 500increased to750 and 500increased to1000 lx therapeutically supported most of the indicators. Both these configurations suppressed urinary 6-sulfatoxymelatonin, and improved alertness, cognitive performance, positive affect, and visual comfort better than 'visit 1: 500constant500' lx (control). The increasing oscillation was observed more beneficial for the morning boost in tropical Malaysia, which is in reverse to that specified in the human rhythmic dynamic lighting protocol developed by researchers from the Netherlands for application during winter. The findings from this study present the feasibility of dynamic architectural lighting acting as an environmental therapeutic solution in supporting the individuals' psychophysiological wellbeing indicators in windowless open-plan workplace in tropical Malaysia. Further investigations on the two prospective configurations are recommended to determine the better supportive one for the morning boosting effect in Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links