Binary classification of brain magnetic resonance (MR) images has made remarkable progress and many automated systems have been developed in the last decade. Multiclass classification of brain MR images is comparatively more challenging and has great clinical significance. Hence, it has recently become an active area of research in biomedical image processing. In this paper, an automated multiclass brain MR classification framework is proposed to categorize the MR images into five classes such as brain stroke, degenerative disease, infectious disease, brain tumor, and normal brain. A texture based feature descriptor is proposed using curvelet transform and Tsallis entropy to extract salient features from MR images. The potential of Tsallis entropy features is compared with Shannon entropy features. A kernel extension of random vector functional link network (KRVFL) is used to perform multiclass classification and improve the generalization performance at faster training speed. To validate the proposed method, two standard multiclass brain MR datasets (MD-1 and MD-2) are used. The proposed system obtained classification accuracies of 97.33% and 94.00% for MD-1 and MD-2 datasets respectively using 5-fold cross validation approach. The experimental results demonstrated the effectiveness of our system compared to the state-of-the-art schemes and hence, can be utilized as a supportive tool by physicians to verify their screening.
Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154-162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV.