The investments and costs of infrastructure, communication, medical-related equipments, and software within the global healthcare ecosystem portray a rather significant increase. The emergence of this proliferation is then expected to grow. As a result, information and cross-system communication became challenging due to the detached independent systems and subsystems which are not connected. The overall model fit expending over a sample size of 320 were tested with structural equation modelling (SEM) using AMOS 20.0 as the modelling tool. SPSS 20.0 is used to analyse the descriptive statistics and dimension reliability. Results of the study show that system utilisation and system impact dimension influences the overall level of services of the healthcare providers. In addition to that, the findings also suggest that systems integration and security plays a pivotal role for IT resources in healthcare organisations. Through this study, a basis for investigation on the need to improvise the Malaysian healthcare ecosystem and the introduction of a cloud computing platform to host the national healthcare information exchange has been successfully established.
The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter's, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.