Sarcasm is the main reason behind the faulty classification of tweets. It brings a challenge in natural language processing (NLP) as it hampers the method of finding people's actual sentiment. Various feature engineering techniques are being investigated for the automatic detection of sarcasm. However, most related techniques have always concentrated only on the content-based features in sarcastic expression, leaving the contextual information in isolation. This leads to a loss of the semantics of words in the sarcastic expression. Another drawback is the sparsity of the training data. Due to the word limit of microblog, the feature vector's values for each sample constructed by BoW produces null features. To address the above-named problems, a Multi-feature Fusion Framework is proposed using two classification stages. The first stage classification is constructed with the lexical feature only, extracted using the BoW technique, and trained using five standard classifiers, including SVM, DT, KNN, LR, and RF, to predict the sarcastic tendency. In stage two, the constructed lexical sarcastic tendency feature is fused with eight other proposed features for modelling a context to obtain a final prediction. The effectiveness of the developed framework is tested with various experimental analysis to obtain classifiers' performance. The evaluation shows that our constructed classification models based on the developed novel feature fusion obtained results with a precision of 0.947 using a Random Forest classifier. Finally, the obtained results were compared with the results of three baseline approaches. The comparison outcome shows the significance of the proposed framework.
Technological developments over the past few decades have changed the way people communicate, with platforms like social media and blogs becoming vital channels for international conversation. Even though hate speech is vigorously suppressed on social media, it is still a concern that needs to be constantly recognized and observed. The Arabic language poses particular difficulties in the detection of hate speech, despite the considerable efforts made in this area for English-language social media content. Arabic calls for particular consideration when it comes to hate speech detection because of its many dialects and linguistic nuances. Another degree of complication is added by the widespread practice of "code-mixing," in which users merge various languages smoothly. Recognizing this research vacuum, the study aims to close it by examining how well machine learning models containing variation features can detect hate speech, especially when it comes to Arabic tweets featuring code-mixing. Therefore, the objective of this study is to assess and compare the effectiveness of different features and machine learning models for hate speech detection on Arabic hate speech and code-mixing hate speech datasets. To achieve the objectives, the methodology used includes data collection, data pre-processing, feature extraction, the construction of classification models, and the evaluation of the constructed classification models. The findings from the analysis revealed that the TF-IDF feature, when employed with the SGD model, attained the highest accuracy, reaching 98.21%. Subsequently, these results were contrasted with outcomes from three existing studies, and the proposed method outperformed them, underscoring the significance of the proposed method. Consequently, our study carries practical implications and serves as a foundational exploration in the realm of automated hate speech detection in text.