Displaying all 2 publications

Abstract:
Sort:
  1. AlDahoul N, Essam Y, Kumar P, Ahmed AN, Sherif M, Sefelnasr A, et al.
    Sci Rep, 2021 04 09;11(1):7826.
    PMID: 33837236 DOI: 10.1038/s41598-021-87415-4
    Rivers carry suspended sediments along with their flow. These sediments deposit at different places depending on the discharge and course of the river. However, the deposition of these sediments impacts environmental health, agricultural activities, and portable water sources. Deposition of suspended sediments reduces the flow area, thus affecting the movement of aquatic lives and ultimately leading to the change of river course. Thus, the data of suspended sediments and their variation is crucial information for various authorities. Various authorities require the forecasted data of suspended sediments in the river to operate various hydraulic structures properly. Usually, the prediction of suspended sediment concentration (SSC) is challenging due to various factors, including site-related data, site-related modelling, lack of multiple observed factors used for prediction, and pattern complexity.Therefore, to address previous problems, this study proposes a Long Short Term Memory model to predict suspended sediments in Malaysia's Johor River utilizing only one observed factor, including discharge data. The data was collected for the period of 1988-1998. Four different models were tested, in this study, for the prediction of suspended sediments, which are: ElasticNet Linear Regression (L.R.), Multi-Layer Perceptron (MLP) neural network, Extreme Gradient Boosting, and Long Short-Term Memory. Predictions were analysed based on four different scenarios such as daily, weekly, 10-daily, and monthly. Performance evaluation stated that Long Short-Term Memory outperformed other models with the regression values of 92.01%, 96.56%, 96.71%, and 99.45% daily, weekly, 10-days, and monthly scenarios, respectively.
  2. Essam Y, Huang YF, Birima AH, Ahmed AN, El-Shafie A
    Sci Rep, 2022 01 07;12(1):302.
    PMID: 34997183 DOI: 10.1038/s41598-021-04419-w
    High loads of suspended sediments in rivers are known to cause detrimental effects to potable water sources, river water quality, irrigation activities, and dam or reservoir operations. For this reason, the study of suspended sediment load (SSL) prediction is important for monitoring and damage mitigation purposes. The present study tests and develops machine learning (ML) models, based on the support vector machine (SVM), artificial neural network (ANN) and long short-term memory (LSTM) algorithms, to predict SSL based on 11 different river data sets comprising of streamflow (SF) and SSL data obtained from the Malaysian Department of Irrigation and Drainage. The main objective of the present study is to propose a single model that is capable of accurately predicting SSLs for any river data set within Peninsular Malaysia. The ANN3 model, based on the ANN algorithm and input scenario 3 (inputs consisting of current-day SF, previous-day SF, and previous-day SSL), is determined as the best model in the present study as it produced the best predictive performance for 5 out of 11 of the tested data sets and obtained the highest average RM with a score of 2.64 when compared to the other tested models, indicating that it has the highest reliability to produce relatively high-accuracy SSL predictions for different data sets. Therefore, the ANN3 model is proposed as a universal model for the prediction of SSL within Peninsular Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links