Displaying publications 1 - 20 of 899 in total

  1. Wang X, Song T, Gong F, Zheng P
    Sci Rep, 2016 06 10;6:27624.
    PMID: 27283843 DOI: 10.1038/srep27624
    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.
  2. Wong RR, Kong C, Lee SH, Nathan S
    Sci Rep, 2016 06 07;6:27475.
    PMID: 27273550 DOI: 10.1038/srep27475
    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.
  3. Ming NH, Ramesh S, Ramesh K
    Sci Rep, 2016 06 08;6:27630.
    PMID: 27273020 DOI: 10.1038/srep27630
    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10(-3) S cm(-1) and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10(-3) S cm(-1) and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.
  4. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA
    Sci Rep, 2016 06 02;6:27236.
    PMID: 27250532 DOI: 10.1038/srep27236
    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
  5. Dan Jiang, Fang Z, Chin SX, Tian XF, Su TC
    Sci Rep, 2016 06 02;6:27205.
    PMID: 27251222 DOI: 10.1038/srep27205
    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.
  6. Chow WZ, Chan YF, Oong XY, Ng LJ, Nor'E SS, Ng KT, et al.
    Sci Rep, 2016 06 09;6:27730.
    PMID: 27279080 DOI: 10.1038/srep27730
    Human metapneumovirus (HMPV) is an important viral respiratory pathogen worldwide. Current knowledge regarding the genetic diversity, seasonality and transmission dynamics of HMPV among adults and children living in tropical climate remains limited. HMPV prevailed at 2.2% (n = 86/3,935) among individuals presented with acute respiratory tract infections in Kuala Lumpur, Malaysia between 2012 and 2014. Seasonal peaks were observed during the northeast monsoon season (November-April) and correlated with higher relative humidity and number of rainy days (P 
  7. Kim J, Mat Teridi MA, Mohd Yusoff AR, Jang J
    Sci Rep, 2016 06 09;6:27773.
    PMID: 27277388 DOI: 10.1038/srep27773
    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (

    PEDOT: PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer

    PEDOT: PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using

    PEDOT: PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting

    PEDOT: PSS as the effective HTL.

  8. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
  9. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
  10. Ikeda T, Ong EB, Watanabe N, Sakaguchi N, Maeda K, Koito A
    Sci Rep, 2016;6:19035.
    PMID: 26738439 DOI: 10.1038/srep19035
    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.
  11. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar EM, Kamarul T
    Sci Rep, 2015 Dec 16;5:18300.
    PMID: 26670291 DOI: 10.1038/srep18300
    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology.
  12. Au A, Griffiths LR, Cheng KK, Wee Kooi C, Irene L, Keat Wei L
    Sci Rep, 2015 Dec 15;5:18224.
    PMID: 26666837 DOI: 10.1038/srep18224
    Both OLR1 and PCSK9 genes are associated with atherosclerosis, cardiovascular disease and ischemic stroke. The overall prevalence of PCSK9 rs505151 and OLR1 rs11053646 variants in ischemic stroke were 0.005 and 0.116, respectively. However, to date, association between these polymorphisms and ischemic stroke remains inconclusive. Therefore, this first meta-analysis was carried out to clarify the presumed influence of these polymorphisms on ischemic stroke. All eligible case-control and cohort studies that met the search terms were retrieved in multiple databases. Demographic and genotyping data were extracted from each study, and the meta-analysis was performed using RevMan 5.3 and Metafor R 3.2.1. The pooled odd ratios (ORs) and 95% confidence intervals (CIs) were calculated using both fixed- and random-effect models. Seven case-control studies encompassing 1897 cases and 2119 controls were critically evaluated. Pooled results from the genetic models indicated that OLR1 rs11053646 dominant (OR = 1.33, 95%  CI:1.11-1.58) and co-dominant models (OR = 1.24, 95%  CI:1.02-1.51) were significantly associated with ischemic stroke. For the PCSK9 rs505151 polymorphism, the OR of co-dominant model (OR = 1.36, 95%  CI:1.01-1.58) was found to be higher among ischemic stroke patients. In conclusion, the current meta-analysis highlighted that variant allele of OLR1 rs11053646 G > C and PCSK9 rs505151 A > G may contribute to the susceptibility risk of ischemic stroke.
  13. Choo SW, Ang MY, Dutta A, Tan SY, Siow CC, Heydari H, et al.
    Sci Rep, 2015 Dec 15;5:18227.
    PMID: 26666970 DOI: 10.1038/srep18227
    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.
  14. Amiri A, Ahmadi G, Shanbedi M, Savari M, Kazi SN, Chew BT
    Sci Rep, 2015;5:17503.
    PMID: 26643279 DOI: 10.1038/srep17503
    Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications.
  15. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
  16. Khanmirzaei MH, Ramesh S, Ramesh K
    Sci Rep, 2015;5:18056.
    PMID: 26659087 DOI: 10.1038/srep18056
    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively.
  17. Lee J, Kim YE, Kim HY, Sinniah M, Chong CK, Song HO
    Sci Rep, 2015;5:18077.
    PMID: 26655854 DOI: 10.1038/srep18077
    High levels of anti-dengue IgM or IgG can be detected using numerous rapid diagnostic tests (RDTs). However, the sensitivity and specificity of these tests are reduced by changes in envelope glycoprotein antigenicity that inevitably occur in limited expression systems. A novel RDT was designed to enhance diagnostic sensitivity. Dengue viruses cultured in animal cells were used as antigens to retain the native viral coat protein. Monoclonal antibodies (mAbs) were then developed, for the first time, against domain I of envelope glycoprotein (EDI). The anti-dengue EDI mAb was employed as a capturer, and EDII and EDIII, which are mainly involved in the induction of neutralizing antibodies in patients, were fully available to bind to anti-dengue IgM or IgG in patients. A one-way automatic blood separation device prevented reverse migration of plasma and maximize the capture of anti-dengue antibodies at the test lines. A clinical evaluation in the field proved that the novel RDT (sensitivities of 96.5% and 96.7% for anti-dengue IgM and IgG) is more effective in detecting anti-dengue antibodies than two major commercial tests (sensitivities of 54.8% and 82% for SD BIOLINE; 50.4% and 75.3% for PanBio). The innovative format of RDT can be applied to other infectious viral diseases.
  18. Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, et al.
    Sci Rep, 2015 Dec 14;5:17928.
    PMID: 26655688 DOI: 10.1038/srep17928
    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
  19. Yasin MH, Ishak A, Pop I
    Sci Rep, 2015;5:17848.
    PMID: 26647651 DOI: 10.1038/srep17848
    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.
  20. Young ND, Chan KG, Korhonen PK, Min Chong T, Ee R, Mohandas N, et al.
    Sci Rep, 2015;5:17345.
    PMID: 26621075 DOI: 10.1038/srep17345
    Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links