Displaying 1 publication

Abstract:
Sort:
  1. Nawi A, Eu KL, Faris ANA, Wan Ahmad WAN, Noordin L
    Exp Physiol, 2020 08;105(8):1223-1231.
    PMID: 32539237 DOI: 10.1113/EP088667
    NEW FINDINGS: What is the central question of this study? Deprivation of rapid eye movement (REM) sleep is associated with increased oxidative stress, but its effects on the blood vessels are poorly documented. We investigated whether REM sleep deprivation induces oxidative stress and causes lipid peroxidation in the aorta. What is the main finding and its important? We demonstrate that REM sleep deprivation induces oxidative stress and mediates lipid peroxidation in the aorta. This can cause endothelial changes and increased blood pressure. These findings will contribute to the growing body of literature on the mechanism underlying the effects of sleep deprivation on cardiovascular disease.

    ABSTRACT: Oxidative stress-mediated lipid peroxidation is a known cause of endothelial injury or dysfunction. Deprivation of rapid eye movement (REM) sleep is associated with oxidative stress. To date, the pathogenesis of increased blood pressure after sleep deprivation remains poorly understood, particularly in the REM sleep phase. Our aim was to investigate the effects of REM sleep deprivation on blood vessels in the REM sleep-deprived rat model. Twenty-eight male Sprague-Dawley rats were divided into four equal groups: free-moving control rats, rats deprived of REM sleep for 72 h (REMsd), tank control rats and 72 h sleep-recovered rats after 72 h of REM sleep deprivation. The rats were deprived of REM sleep using the inverted flowerpot technique. Food consumption, body weight gain and systolic blood pressure were monitored. At the end of the experiment, the descending thoracic aorta was isolated for the measurement of oxidative stress markers. Despite a significant increase in food consumption in the REMsd group compared with the other groups, there was a significant reduction in body weight gain. Systolic blood pressure also showed a significant increase in the REMsd group compared with the other groups. Superoxide dismutase activity was significantly lower and malondialdehyde concentrations significantly higher in the REMsd group compared with the other groups. Increased levels of malondialdehyde are suggestive of lipid peroxidation in the blood vessels, and oxidative stress may be attributed to the initiation of the process. The changes after REM sleep deprivation revert during sleep recovery. In conclusion, the findings of the present study provide convincing evidence that REM sleep deprivation induced lipid peroxidation, leading to endothelial damage.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links