Displaying all 10 publications

Abstract:
Sort:
  1. Hong YH, Betik AC, McConell GK
    Exp Physiol, 2014 Dec 1;99(12):1569-73.
    PMID: 25192731 DOI: 10.1113/expphysiol.2014.079202
    Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed.
  2. Lindsay A, Othman MI, Prebble H, Davies S, Gieseg SP
    Exp Physiol, 2016 07 01;101(7):851-65.
    PMID: 27094349 DOI: 10.1113/EP085795
    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P 
  3. Nawi A, Eu KL, Faris ANA, Wan Ahmad WAN, Noordin L
    Exp Physiol, 2020 08;105(8):1223-1231.
    PMID: 32539237 DOI: 10.1113/EP088667
    NEW FINDINGS: What is the central question of this study? Deprivation of rapid eye movement (REM) sleep is associated with increased oxidative stress, but its effects on the blood vessels are poorly documented. We investigated whether REM sleep deprivation induces oxidative stress and causes lipid peroxidation in the aorta. What is the main finding and its important? We demonstrate that REM sleep deprivation induces oxidative stress and mediates lipid peroxidation in the aorta. This can cause endothelial changes and increased blood pressure. These findings will contribute to the growing body of literature on the mechanism underlying the effects of sleep deprivation on cardiovascular disease.

    ABSTRACT: Oxidative stress-mediated lipid peroxidation is a known cause of endothelial injury or dysfunction. Deprivation of rapid eye movement (REM) sleep is associated with oxidative stress. To date, the pathogenesis of increased blood pressure after sleep deprivation remains poorly understood, particularly in the REM sleep phase. Our aim was to investigate the effects of REM sleep deprivation on blood vessels in the REM sleep-deprived rat model. Twenty-eight male Sprague-Dawley rats were divided into four equal groups: free-moving control rats, rats deprived of REM sleep for 72 h (REMsd), tank control rats and 72 h sleep-recovered rats after 72 h of REM sleep deprivation. The rats were deprived of REM sleep using the inverted flowerpot technique. Food consumption, body weight gain and systolic blood pressure were monitored. At the end of the experiment, the descending thoracic aorta was isolated for the measurement of oxidative stress markers. Despite a significant increase in food consumption in the REMsd group compared with the other groups, there was a significant reduction in body weight gain. Systolic blood pressure also showed a significant increase in the REMsd group compared with the other groups. Superoxide dismutase activity was significantly lower and malondialdehyde concentrations significantly higher in the REMsd group compared with the other groups. Increased levels of malondialdehyde are suggestive of lipid peroxidation in the blood vessels, and oxidative stress may be attributed to the initiation of the process. The changes after REM sleep deprivation revert during sleep recovery. In conclusion, the findings of the present study provide convincing evidence that REM sleep deprivation induced lipid peroxidation, leading to endothelial damage.

  4. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
  5. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al.
    Exp Physiol, 2017 11 01;102(11):1373-1379.
    PMID: 28762571 DOI: 10.1113/EP086436
    NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
  6. Valli H, Ahmad S, Fraser JA, Jeevaratnam K, Huang CL
    Exp Physiol, 2017 12 01;102(12):1619-1634.
    PMID: 28960529 DOI: 10.1113/EP086589
    NEW FINDINGS: What is the central question of this study? Can we experimentally replicate atrial pro-arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age-dependent atrial arrhythmic phenotypes in Langendorff-perfused murine Pgc1β-/- hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro-arrhythmic changes in chronic metabolic disease. Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12-16 week) and aged (>52 week) wild-type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)-deficient (Pgc1β-/- ) Langendorff-perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole-heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1β-/- hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dtmax ) were reduced in Pgc1β-/- hearts. Action potential latencies were increased by the Pgc1β-/- genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90 ) were shorter in Pgc1β-/- hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1β-/- hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1β-/- genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1β-/- genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1β-/- hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here.
  7. Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, et al.
    Exp Physiol, 2024 Jan 27.
    PMID: 38279951 DOI: 10.1113/EP091587
    Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
  8. Deuchars SA, Lall VK, Clancy J, Mahadi M, Murray A, Peers L, et al.
    Exp Physiol, 2018 Mar 01;103(3):326-331.
    PMID: 29205954 DOI: 10.1113/EP086433
    What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised.
  9. Bradshaw L, Koumanov F, Berry S, Betts JA, Gonzalez J
    Exp Physiol, 2023 Apr;108(4):543-548.
    PMID: 36809567 DOI: 10.1113/EP091005
    Cardiovascular disease (CVD) is the leading cause of death worldwide. Physical activity interventions improve almost all modifiable CVD risk factors, but the effect of physical activity on low density lipoprotein cholesterol (LDL-C) is uncertain. This may be due to lack of research on the feeding status in which the physical activity is performed. The aim of this study is to investigate the effect of fasted versus fed exercise on LDL-C concentrations in males and females. One hundred healthy participants, equal males and females, aged between 25 and 60 years will be recruited and will undergo a home-based 12-week exercise intervention. After baseline testing, participants will be randomized to a fasted exercise (exercise after an 8-h fast) or fed exercise (exercise 90-180 min after ingestion of 1 g kg-1 CHO) group and will perform 50 min of moderate intensity exercise (e.g., 95% heart rate of lactate threshold 1) three times a week either before or after a high carbohydrate (1 g kg-1 ) meal. Participants will visit the laboratory again at week 4 and week 12 and measurements will be taken for body composition, resting blood pressure, fasting blood glucose, lipid profiles and systemic inflammation, lactate threshold, and 14-day blood glucose control.
  10. Owen CM, Bacardit J, Tan MP, Saedon NI, Goh CH, Newton JL, et al.
    Exp Physiol, 2024 Nov 11.
    PMID: 39526963 DOI: 10.1113/EP091876
    Gravity, an invisible but constant force , challenges the regulation of blood pressure when transitioning between postures. As physiological reserve diminishes with age, individuals grow more susceptible to such stressors over time, risking inadequate haemodynamic control observed in orthostatic hypotension. This prevalent condition is characterized by drops in blood pressure upon standing; however, the contrary phenomenon of blood pressure rises has recently piqued interest. Expanding on the currently undefined orthostatic hypertension, our study uses continuous non-invasive cardiovascular data to explore the full spectrum of blood pressure profiles and their associated frailty outcomes in community-dwelling older adults. Given the richness of non-invasive beat-to-beat data, artificial intelligence (AI) offers a solution to detect the subtle patterns within it. Applying machine learning to an existing dataset of community-based adults undergoing postural assessment, we identified three distinct clusters (iOHYPO, OHYPO and OHYPER) akin to initial and classic orthostatic hypotension and orthostatic hypertension, respectively. Notably, individuals in our OHYPER cluster exhibited indicators of frailty and sarcopenia, including slower gait speed and impaired balance. In contrast, the iOHYPO cluster, despite transient drops in blood pressure, reported fewer fallers and superior cognitive performance. Surprisingly, those with sustained blood pressure deficits outperformed those with sustained rises, showing greater independence and higher Fried frailty scores. Working towards more refined definitions, our research indicates that AI approaches can yield meaningful blood pressure morphologies from beat-to-beat data. Furthermore, our findings support orthostatic hypertension as a distinct clinical entity, with frailty implications suggesting that it is worthy of further investigation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links