Displaying all 2 publications

Abstract:
Sort:
  1. Ullah S, Daud H, Dass SC, Fanaee-T H, Khalil A
    PLoS One, 2018;13(6):e0199176.
    PMID: 29920540 DOI: 10.1371/journal.pone.0199176
    Identifying the abnormally high-risk regions in a spatiotemporal space that contains an unexpected disease count is helpful to conduct surveillance and implement control strategies. The EigenSpot algorithm has been recently proposed for detecting space-time disease clusters of arbitrary shapes with no restriction on the distribution and quality of the data, and has shown some promising advantages over the state-of-the-art methods. However, the main problem with the EigenSpot method is that it cannot be adapted to detect more than one spatiotemporal hotspot. This is an important limitation, since, in reality, we may have multiple hotspots, sometimes at the same level of importance. We propose an extension of the EigenSpot algorithm, called Multi-EigenSpot that is able to handle multiple hotspots by iteratively removing previously detected hotspots and re-running the algorithm until no more hotspots are found. In addition, a visualization tool (heatmap) has been linked to the proposed algorithm to visualize multiple clusters with different colors. We evaluated the proposed method using the monthly data on measles cases in Khyber-Pakhtunkhwa, Pakistan (Jan 2016- Dec 2016), and the efficiency was compared with the state-of-the-art methods: EigenSpot and Space-time scan statistic (SaTScan). The results showed the effectiveness of the proposed method for detecting multiple clusters in a spatiotemporal space.
  2. Ullah S, Daud H, Dass SC, Fanaee-T H, Kausarian H, Khalil A
    PMID: 32098247 DOI: 10.3390/ijerph17041413
    The number of tuberculosis (TB) cases in Pakistan ranks fifth in the world. The National TB Control Program (NTP) has recently reported more than 462,920 TB patients in Khyber Pakhtunkhwa province, Pakistan from 2002 to 2017. This study aims to identify spatial and space-time clusters of TB cases in Khyber Pakhtunkhwa province Pakistan during 2015-2019 to design effective interventions. The spatial and space-time cluster analyses were conducted at the district-level based on the reported TB cases from January 2015 to April 2019 using space-time scan statistics (SaTScan). The most likely spatial and space-time clusters were detected in the northern rural part of the province. Additionally, two districts in the west were detected as the secondary space-time clusters. The most likely space-time cluster shows a tendency of spread toward the neighboring districts in the central part, and the most likely spatial cluster shows a tendency of spread toward the neighboring districts in the south. Most of the space-time clusters were detected at the start of the study period 2015-2016. The potential TB clusters in the remote rural part might be associated to the dry-cool climate and lack of access to the healthcare centers in the remote areas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links