Invasive species are one of the main sources of the ongoing global loss of biodiversity. Invasive ants are known as particularly damaging invaders and their introductions are often accompanied by population-level behavioural and genetic changes that may contribute to their success. Anoplolepis gracilipes is an invasive ant that has just recently received increased attention due to its negative impact on native ecosystems. We examined the behaviour and population structure of A. gracilipes in Sabah, Malaysia. A total of 475 individuals from 24 colonies were genotyped with eight microsatellite markers. Intracolonial relatedness was high, ranging from 0.37 to 1 (mean +/- SD: 0.82 +/- 0.04), while intercolonial relatedness was low (0.0 +/- 0.02, range -0.5-0.76). We compared five distinct sampling regions in Sabah and Brunei. A three-level hierarchical F-analysis revealed high genetic differentiation among colonies within the same region, but low genetic differentiation within colonies or across regions. Overall levels of heterozygosity were unusually high (mean H(O) = 0.95, mean H(E) = 0.71) with two loci being entirely heterozygous, indicating an unusual reproductive system in this species. Bioassays revealed a negative correlation between relatedness and aggression, suggesting kinship as one factor facilitating supercolony formation in this species. Furthermore, we genotyped one individual per nest from Sabah (22 nests), Sarawak (one nest), Brunei (three nests) and the Philippines (two nests) using two mitochondrial DNA markers. We found six haplotypes, two of which included 82.1% of all sequences. Our study shows that the sampled area in Sabah consists of a mosaic of differently interrelated nests in different stages of colony establishment. While some of the sampled colonies may belong to large supercolonies, others are more likely to represent recently introduced or dispersed propagules that are just beginning to expand.
To elucidate the evolution of one of the most species-rich ant-plant symbiotic systems, the association between Crematogaster (Myrmicinae) and Macaranga (Euphorbiaceae) in South-East Asia, we conducted a phylogenetic analysis of the ant partners. For the phylogenetic analysis partial mitochondrial cytochrome oxidase I and II were sequenced and Maximum Parsimony analysis was performed. The analyzed Crematogaster of the subgenus Decacrema fell into three distinct clades which are also characterized by specific morphological and ecological traits (queen morphology, host-plants, and colony structure). Our results supported the validity of our currently used morphospecies concept for Peninsula Malaysia. However, on a wider geographic range (including North and North-East Borneo) some morphospecies turned out to be species complexes with genetically quite distinct taxa. Our phylogenetic analysis and host association studies do not indicate strict cocladogenesis between the subgenus Decacrema and their Macaranga host-plants because multiple ant taxa occur on quite distinct host-plants belonging to different clades within in the genus Macaranga. These results support the view that host-shifting or host-expansion is common in the ants colonizing Macaranga. Additionally, the considerable geographic substructuring found in the phylogenetic trees of the ants suggests that allopatric speciation has also played a role in the diversification and the current distribution of the Decacrema ants.