Background: Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells.
Materials and Methods: Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting.
Results: Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response.
Conclusion: We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer.
SUMMARY: Helichrysetin induced DNA damage in Ca Ski cellsDNA damage caused JNK-mediated phosphorylation of p53 resulting in p53-mediated apoptosisHelichrysetin is a potential DNA damage inducing agent through JNK activation to kill human cervical carcinoma cells. Abbreviations used: ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC50: Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide, JNK: c-Jun N-terminal kinase, MMP: Mitochondrial membrane potential, PBS: Phosphate-buffered saline, SRB: Sulforhodamine B, TUNEL: Terminal deoxynucleotidyl transferase dUTP nick labeling.
This study determines the optimal cut-off scores for the Montreal Cognitive Assessment (MoCA) to detect HIV-associated neurocognitive disorders (HAND) in a multi-ethnic Malaysian HIV-positive cohort by developing demographically corrected normative standards among 283 HIV-negative community-based controls with overlapping demographic characteristics. The norms (corrected for age, sex, education, ethnicity) were applied to 342 HIV-positive virally suppressed individuals on cART. Impairment rates were classified using the Global Deficit Score (GDS ≥ .5) method. The MoCA was also scored according to the recommended cut-off of ≤ 26, and functional decline was applied to both impairment definitions to classify HAND per the Frascati criteria. The ≤ 26 cut-off considerably overestimated cognitive impairment in both samples (59.4% HIV-negative; 69.3% HIV-positive). In contrast, corrected scores yielded impairment rates consistent with what has been reported internationally in virally suppressed cohorts (23.4% with 83.3% mild impairment, 16.7% moderate impairment). A supplemental file allowing the computation of corrected MoCA scores and impairment status is included.