Our review focused on nanomaterials-based toxicity evaluation and its exposure to the human and aquatic animals when it was leached and contaminated in the environment. Ecotoxicological assessment and its mechanism mainly affect the skin covering layers and its preventive barriers that protect the foreign particles' skin. Nanoscale materials are essential in the medical field, especially in biomedical and commercial applications such as nanomedicine and drug delivery, mainly in therapeutic treatments. However, various commercial formulations of pharmaceutical drugs are manufactured through a series of clinical trials. The role of such drugs and their metabolites has not met the requirement of an individual's need at the early stage of the treatments except few drugs and medicines with minimal or no side effects. Therefore, biology and medicines are taken up the advantages of nano scaled drugs and formulations for the treatment of various diseases. The present study identifies and analyses the different nanoparticles and their chemical components on the skin and their effects due to penetration. There are advantageous factors available to facilitate positive and negative contact between dermal layers. It creates a new agenda for an established application that is mainly based on skin diseases.
Semen parameters are been found as a key factor to evaluate the count and morphology in the given semen sample. The deep knowledge of male infertility will unravel with semen parameters correlated with molecular and biochemical parameters. The current research study is to identify the motility associated protein and its structure through the in-silico approach. Semen samples were collected and initial analysis including semen parameters was analyzed by using the World Health Organization protocol. Semen biochemical parameters, namely, seminal plasma protein concentration, fructose content, and glucosidase content were calculated and evaluated for correlation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) were carried out for identification of Septin-4 presence in the semen sample. Mascot search was done for protein conformation and in-silico characterization of Septin-4 by structural modeling in Iterative Threading Assembly Refinement (I-TASSER). Twenty-five nanoseconds molecular dynamics (MD) simulations results showed the stable nature of Septin-4 in the dynamic system. Overall, our results showed the presence of motility-associated protein in normospermia and control samples and not in the case of asthenospermia and oligoasthenospermia. Molecular techniques characterized the presence of Septin-4 and as a novel biomarker for infertility diagnosis.
Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8-12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6-11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.