Displaying publications 1 - 20 of 356 in total

Abstract:
Sort:
  1. Abdullah AS, Mohammed AS, Rasedee A, Mirghani ME
    Int J Mol Sci, 2015;16(2):3528-36.
    PMID: 25664859 DOI: 10.3390/ijms16023528
    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.
  2. Md Yusof EN, S A Ravoof TB, Tiekink ER, Veerakumarasivam A, Crouse KA, Mohamed Tahir MI, et al.
    Int J Mol Sci, 2015 May 15;16(5):11034-54.
    PMID: 25988384 DOI: 10.3390/ijms160511034
    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.
  3. Manshadi MD, Kamalidehghan B, Keshavarzi F, Aryani O, Dadgar S, Arastehkani A, et al.
    Int J Mol Sci, 2015 Mar 24;16(4):6668-76.
    PMID: 25811928 DOI: 10.3390/ijms16046668
    BACKGROUND: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene.

    METHODS: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis.

    RESULTS: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033-1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417-1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations.

    CONCLUSION: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations.

  4. Asman S, Mohamad S, Sarih NM
    Int J Mol Sci, 2015;16(2):3656-76.
    PMID: 25667978 DOI: 10.3390/ijms16023656
    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the -OH group of MAA and one of the primary -OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π-π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP.
  5. Razak RA, Abdullah MM, Hussin K, Ismail KN, Hardjito D, Yahya Z
    Int J Mol Sci, 2015;16(5):11629-47.
    PMID: 26006238 DOI: 10.3390/ijms160511629
    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.
  6. Khairi NA, Yusof NA, Abdullah AH, Mohammad F
    Int J Mol Sci, 2015;16(5):10562-77.
    PMID: 26006226 DOI: 10.3390/ijms160510562
    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity.
  7. Hamdi OA, Feroz SR, Shilpi JA, Anouar el H, Mukarram AK, Mohamad SB, et al.
    Int J Mol Sci, 2015;16(3):5180-93.
    PMID: 25756376 DOI: 10.3390/ijms16035180
    Curcumenol and curcumenone are two major constituents of the plants of medicinally important genus of Curcuma, and often govern the pharmacological effect of these plant extracts. These two compounds, isolated from C. zedoaria rhizomes were studied for their binding to human serum albumin (HSA) using the fluorescence quench titration method. Molecular docking was also performed to get a more detailed insight into their interaction with HSA at the binding site. Additions of these sesquiterpenes to HSA produced significant fluorescence quenching and blue shifts in the emission spectra of HSA. Analysis of the fluorescence data pointed toward moderate binding affinity between the ligands and HSA, with curcumenone showing a relatively higher binding constant (2.46 × 105 M-1) in comparison to curcumenol (1.97 × 104 M-1). Cluster analyses revealed that site I is the preferred binding site for both molecules with a minimum binding energy of -6.77 kcal·mol-1. However, binding of these two molecules to site II cannot be ruled out as the binding energies were found to be -5.72 and -5.74 kcal·mol-1 for curcumenol and curcumenone, respectively. The interactions of both ligands with HSA involved hydrophobic interactions as well as hydrogen bonding.
  8. Chua KH, Lian LH, Sim XJ, Cheah TE, Lau TP
    Int J Mol Sci, 2015;16(5):9794-803.
    PMID: 25938972 DOI: 10.3390/ijms16059794
    The programmed cell death 1 (PDCD1) gene encodes for the PD-1 (programmed death 1) molecule, which negatively regulates self-reactive T- and B-cells in the maintenance of peripheral tolerance. A previous report had shown the development of lupus-like phenotypes in PD-1-deficient C57BL/6 mice, was suggestive to the role of PDCD1 in predisposing to systemic lupus erythematosus (SLE). Hence, we aimed to investigate the association between PDCD1 and SLE susceptibility in the Malaysian population. A TaqMan-based real-time PCR was employed to screen for PD1.1, PD1.3, PD1.5 and PD1.6 in both SLE and healthy control groups of 200 samples each. The observed frequency for PD1.5C/C genotype was significantly higher in Indian SLE patients and Malay controls (p < 0.01). On the other hand, the PD1.5C/T genotype might predispose the Malays to SLE, but confer a protective effect among the Indians (p < 0.01). The PD1.1, PD1.3 and PD1.6 were, however, not correlated to genetic predisposition of SLE in our Malaysian population. In conclusion, PD1.5 variant was significantly associated to SLE susceptibility in our Malaysian cohort. Our failure in replicating the association between other investigated PDCD1 variants and risk of getting SLE might due to ethnic and geographic variations in the distribution of these genetic variants.
  9. Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H
    Int J Mol Sci, 2015;16(5):9693-718.
    PMID: 25938966 DOI: 10.3390/ijms16059693
    Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
  10. Hussein MZ, Jaafar AM, Yahaya AH, Masarudin MJ, Zainal Z
    Int J Mol Sci, 2014;15(11):20254-65.
    PMID: 25380526 DOI: 10.3390/ijms151120254
    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.
  11. Fatima A, Abdul AB, Abdullah R, Karjiban RA, Lee VS
    Int J Mol Sci, 2015 Jan 26;16(2):2747-66.
    PMID: 25629232 DOI: 10.3390/ijms16022747
    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.
  12. Kumar SS, Alarfaj AA, Munusamy MA, Singh AJ, Peng IC, Priya SP, et al.
    Int J Mol Sci, 2014;15(12):23418-47.
    PMID: 25526563 DOI: 10.3390/ijms151223418
    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
  13. Bakar MH, Sarmidi MR, Kai CK, Huri HZ, Yaakob H
    Int J Mol Sci, 2014;15(12):22227-57.
    PMID: 25474091 DOI: 10.3390/ijms151222227
    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.
  14. Mu AK, Bee PC, Lau YL, Chen Y
    Int J Mol Sci, 2014;15(11):19952-61.
    PMID: 25372941 DOI: 10.3390/ijms151119952
    Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.
  15. Khor BY, Tye GJ, Lim TS, Noordin R, Choong YS
    Int J Mol Sci, 2014;15(6):11082-99.
    PMID: 24950179 DOI: 10.3390/ijms150611082
    Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in "Brugia Rapid". However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized. A total of 5 ns molecular dynamics simulation were performed to investigate the packing of the protein. Here we also identified three epitopes as potential antibody binding sites from the molecular dynamics average structure. The structure and epitopes obtained from this study can be used to design a binder specific against BmR1, thus aiding future development of antigen-based filariasis diagnostics to complement the current diagnostics.
  16. Hamdi OA, Anouar el H, Shilpi JA, Trabolsy ZB, Zain SB, Zakaria NS, et al.
    Int J Mol Sci, 2015 Apr 27;16(5):9450-68.
    PMID: 25923077 DOI: 10.3390/ijms16059450
    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay.
  17. Taheri S, Abdullah TL, Karimi E, Oskoueian E, Ebrahimi M
    Int J Mol Sci, 2014;15(7):13077-90.
    PMID: 25056545 DOI: 10.3390/ijms150713077
    The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy) on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), ferric reduction, antioxidant power (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.
  18. Shah SA, Tan HL, Sultan S, Faridz MA, Shah MA, Nurfazilah S, et al.
    Int J Mol Sci, 2014;15(7):12027-60.
    PMID: 25003642 DOI: 10.3390/ijms150712027
    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids.
  19. Yong FL, Wang CW, Roslani AC, Law CW
    Int J Mol Sci, 2014 Jul 02;15(7):11713-29.
    PMID: 24992592 DOI: 10.3390/ijms150711713
    Recent advances in microRNAome have made microRNAs (miRNAs) a compelling novel class of biomarker in cancer biology. In the present study, the role of miR-23a in the carcinogenesis of colorectal cancer (CRC) was investigated. Cell viability, apoptosis, and caspase 3/7 activation analyses were conducted to determine the potentiality of apoptosis resistance function of miR-23a in CRC. Luciferase assay was performed to verify a putative target site of miR-23a in the 3'-UTR of apoptosis protease activating factor 1 (APAF1) mRNA. The expression levels of miR-23a and APAF1 in CRC cell lines (SW480 and SW620) and clinical samples were assessed using reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. We found that the inhibition of miR-23a in SW480 and SW620 cell lines resulted in significant reduction of cell viability and promotion of cell apoptosis. Moreover, miR-23a up-regulation was coupled with APAF1 down-regulation in CRC tissue samples. Taken together, miR-23a was identified to regulate apoptosis in CRC. Our study highlights the potential application of miR-23a/APAF1 regulation axis in miRNA-based therapy and prognostication.
  20. Kalantari K, Ahmad MB, Masoumi HR, Shameli K, Basri M, Khandanlou R
    Int J Mol Sci, 2014;15(7):12913-27.
    PMID: 25050784 DOI: 10.3390/ijms150712913
    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links