Displaying all 16 publications

Abstract:
Sort:
  1. Halmi, M.I.E., Khayat, M.E., Rahman, M.F.A., Gunasekaran, B., Masdor, N.A.
    MyJurnal
    In this work, a temporal monitoring work for heavy metals from an effluent discharge point in
    the Juru Industrial Estate was carried out using the protease extracted from garlic (Allium
    sativum) as the principal bioassay system. casein-Coomassie-dye binding assay method has
    utilized this purpose. The periodic sampling results for one day of a location in the Juru
    Industrial Estate showed temporal variation of copper concentration coinciding with garlic
    protease inhibition with the highest concentrations of copper occurring between 12.00 and 16.00
    hours of between 3 and 3.5 mg/L copper. The crude proteases extracted from Allium sativum
    successfully detect temporal variation of copper form this location. In conclusion, this assay
    method has the potential to be a rapid, sensitive, and economic inhibitive assay for the largescale
    biomonitoring works for the heavy metal copper from this area.
  2. Gunasekaran, B., Johari, W.L.W., Wasoh, M.H., Masdor, N.A., Shukor, M.Y.
    MyJurnal
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are
    expensive and need skilled technician, a simple and fast method is needed to determine the
    presence of heavy metals in the environment. In this work, a preliminary study was carried out
    on the applicability of various local plants as a source of protease for the future development of
    the inhibitive enzyme assay for heavy-metals. The crude proteases preparation was assayed using
    casein as a substrate in conjunction with the Coomassie dye-binding assay. The crude protease
    from the kesinai plant was found to be the most potent plant protease. The crude enzyme
    exhibited broad temperature and pH ranges for activity and will be developed in the future as a
    potential inhibitive assay for heavy metals.
  3. Gunasekaran B, Shukor MY
    Methods Mol Biol, 2020;2089:245-250.
    PMID: 31773659 DOI: 10.1007/978-1-0716-0163-1_16
    The main strategy for lowering blood cholesterol levels is through the inhibition of the NADPH-dependent HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA reductase). The enzyme catalyses the reduction of HMG-CoA to mevalonate and this process is inhibited by statins that form the bulk of the therapeutic agents to treat high cholesterol since the 1970s. Newer drugs that are safer than statins are constantly being developed. The inhibition of candidate drugs to HMG-CoA reductase remains the mainstay of drug development research. The determination of the enzyme activity is important for the correct assessment of potency of the enzyme as well as determining the inhibition of potential therapeutic agents from the plant and microbial extracts. Also, this chapter covers the use of the popular four-parameter logistics model that can yield accurate estimation of the IC50 values of therapeutic agents and their 95% confidence intervals.
  4. Hor YZ, Salvamani S, Gunasekaran B, Yian KR
    Yale J Biol Med, 2023 Dec;96(4):511-526.
    PMID: 38161583 DOI: 10.59249/VHYE2306
    Colorectal Neoplasia Differentially Expressed (CRNDE), a long non-coding RNA that was initially identified as aberrantly expressed in colorectal cancer (CRC) has also been observed to exhibit elevated expression in various other human malignancies. Recent research has accumulated substantial evidence implicating CRNDE as an oncogenic player, exerting influence over critical cellular processes linked to cancer progression. Particularly, its regulatory interactions with microRNAs and proteins have been shown to modulate pathways that contribute to carcinogenesis and tumorigenesis. This review will comprehensively outline the roles of CRNDE in colorectal, liver, glioma, lung, cervical, gastric and prostate cancer, elucidating the mechanisms involved in modulating proliferation, apoptosis, migration, invasion, angiogenesis, and radio/chemoresistance. Furthermore, the review highlights CRNDE's potential as a multifaceted biomarker, owing to its presence in diverse biological samples and stable properties, thereby underscoring its diagnostic, therapeutic, and prognostic applications. This review aims to provide comprehensive insights of CRNDE-mediated oncogenesis and identify CRNDE as a promising target for future clinical interventions.
  5. Chowdhury PR, Salvamani S, Gunasekaran B, Peng HB, Ulaganathan V
    Yale J Biol Med, 2023 Dec;96(4):495-509.
    PMID: 38161577 DOI: 10.59249/TDBJ7410
    Colorectal cancer (CRC) has been recorded amongst the most common cancers in the world, with high morbidity and mortality rates, and relatively low survival rates. With risk factors such as chronic illness, age, and lifestyle associated with the development of CRC, the incidence of CRC is increasing each year. Thus, the discovery of novel biomarkers to improve the diagnosis and prognosis of CRC has become beneficial. Long non-coding RNAs (lncRNAs) have been emerging as potential players in several tumor types, one among them is the lncRNA H19. The paternally imprinted oncofetal gene is expressed in the embryo, downregulated at birth, and reappears in tumors. H19 aids in CRC cell growth, proliferation, invasion, and metastasis via various mechanisms of action, significantly through the lncRNA-microRNA (miRNA)-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network, where H19 behaves as a miRNA sponge. The RNA transcript of H19 obtained from the first exon of the H19 gene, miRNA-675 also promotes CRC carcinogenesis. Overexpression of H19 in malignant tissues compared to adjacent non-malignant tissues marks H19 as an independent prognostic marker in CRC. Besides its prognostic value, H19 serves as a promising target for therapy in CRC treatment.
  6. Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY
    Biomed Res Int, 2014;2014:480258.
    PMID: 24971331 DOI: 10.1155/2014/480258
    Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
  7. Uba G, Manogaran M, Gunasekaran B, Halmi MIE, Shukor MYA
    PMID: 33227985 DOI: 10.3390/ijerph17228585
    Potentially toxic metals pollution in the Straits of Malacca warrants the development of rapid, simple and sensitive assays. Enzyme-based assays are excellent preliminary screening tools with near real-time potential. The heavy-metal assay based on the protease ficin was optimized for mercury detection using response surface methodology. The inhibitive assay is based on ficin action on the substrate casein and residual casein is determined using the Coomassie dye-binding assay. Toxic metals strongly inhibit this hydrolysis. A central composite design (CCD) was utilized to optimize the detection of toxic metals. The results show a marked improvement for the concentration causing 50% inhibition (IC50) for mercury, silver and copper. Compared to one-factor-at-a-time (OFAT) optimization, RSM gave an improvement of IC50 (mg/L) from 0.060 (95% CI, 0.030-0.080) to 0.017 (95% CI, 0.016-0.019), from 0.098 (95% CI, 0.077-0.127) to 0.028 (95% CI, 0.022-0.037) and from 0.040 (95% CI, 0.035-0.045) to 0.023 (95% CI, 0.020-0.027), for mercury, silver and copper, respectively. A near-real time monitoring of mercury concentration in the Straits of Malacca at one location in Port Klang was carried out over a 4 h interval for a total of 24 h and validated by instrumental analysis, with the result revealing an absence of mercury pollution in the sampling site.
  8. Salvamani S, Tan HZ, Thang WJ, Ter HC, Wan MS, Gunasekaran B, et al.
    Br J Biomed Sci, 2020 Oct;77(4):168-184.
    PMID: 32942955 DOI: 10.1080/09674845.2020.1826136
    The COVID-19 disease is caused by the SARS-CoV-2 virus, which is highly infective within the human population. The virus is widely disseminated to almost every continent with over twenty-seven million infections and over ninety-thousand reported deaths attributed to COVID-19 disease. SARS-CoV-2 is a single stranded RNA virus, comprising three main viral proteins; membrane, spike and envelope. The clinical features of COVID-19 disease can be classified according to different degrees of severity, with some patients progressing to acute respiratory distress syndrome, which can be fatal. In addition, many infections are asymptomatic or only cause mild symptoms. As there is no specific treatment for COVID-19 there is considerable endeavour to raise a vaccine against SARS-CoV-2, in addition to engineering neutralizing antibody interventions. In the absence of an effective vaccine, movement controls of varying stringencies have been imposed. Whilst enforced lockdown measures have been effective, they may be less effective against the current strain of SARS-CoV-2, the G614 clade. Conversely, other mutations of the virus, such as the Δ382 variant could reduce the clinical relevance of infection. The front runners in the race to develop an effective vaccine focus on the SARS-Co-V-2 Spike protein. However, vaccines that produce a T-cell response to a wider range of SARS-Co-V-2 viral proteins, may be more effective. Population based studies that determine the level of innate immunity to SARS-CoV-2, from prior exposure to the virus or to other coronaviruses, will have important implications for government imposed movement control and the strategic delivery of vaccination programmes.
  9. Liau XL, Salvamani S, Gunasekaran B, Chellappan DK, Rhodes A, Ulaganathan V, et al.
    Br J Biomed Sci, 2023;80:11103.
    PMID: 37025163 DOI: 10.3389/bjbs.2023.11103
    Colorectal cancer (CRC) is ranked as the third most common cancer and second deadliest cancer in both men and women in the world. Currently, the cure rate and 5-year survival rate of CRC patients remain relatively low. Therefore, discovering a novel molecular biomarker that can be used to improve CRC screening, diagnosis, prognosis, and treatment would be beneficial. Long non-coding RNA colon cancer-associated transcript 1 (CCAT 1) has been found overexpressed in CRC and is associated with CRC tumorigenesis and treatment outcome. CCAT 1 has a high degree of specificity and sensitivity, it is readily detected in CRC tissues and is significantly overexpressed in both premalignant and malignant CRC tissues. Besides, CCAT 1 is associated with clinical manifestation and advanced features of CRC, such as lymph node metastasis, high tumor node metastasis stage, differentiation, invasion, and distant metastasis. In addition, they can upregulate oncogenic c-MYC and negatively modulate microRNAs via different mechanisms of action. Furthermore, dysregulated CCAT 1 also enhances the chemoresistance in CRC cells while downregulation of them reverses the malignant phenotypes of cancer cells. In brief, CCAT 1 serves as a potential screening, diagnostic and prognostic biomarker in CRC, it also serves as a potential therapeutic marker to treat CRC patients.
  10. Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA
    PMID: 27051453 DOI: 10.1155/2016/8090841
    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.
  11. Manogaran M, Yasid NA, Othman AR, Gunasekaran B, Halmi MIE, Shukor MYA
    PMID: 33801387 DOI: 10.3390/ijerph18052424
    The application of microorganisms in azo dye remediation has gained significant attention, leading to various published studies reporting different methods for obtaining the best dye decolouriser. This paper investigates and compares the role of methods and media used in obtaining a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely rare to find. It was demonstrated that a prolonged acclimation under low substrate availability successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites of consortium JR3 showed an improvement in mung bean's seed germination and shoot and root length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation at 0.7 g/L ammonium sulphate, pH 8, 35 °C, and RR120 concentrations of 200 ppm. Decolourisation modelling utilising response surface methodology (RSM) successfully improved decolourisation even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate, pH 8.29, 34.5 °C and 200 ppm RR120.
  12. Liu Y, Andin VC, Chor WK, Gunasekaran B, Chong CM, Lee PT, et al.
    J Fish Biol, 2024 Dec;105(6):1681-1693.
    PMID: 39175254 DOI: 10.1111/jfb.15908
    This study aims to develop an alternative aquafeed derived from insect meal for Lates calcarifer juveniles, with the objectives of exploring the physiological performance, biological parameters, and economic analysis of substituting fishmeal (FM) with defatted black soldier fly (Hermetia illucens) larvae (BSFL) as part of the diet of L. calcarifer juveniles. Five practical diets were formulated to include 0% (BSFL0, serves as control group), 5% (BSFL5), 10% (BSFL10), 15% (BSFL15), and 20% (BSFL20) of BSFL meal, partially or fully replacing FM, respectively. Each diet was randomly assigned to triplicate groups of 30 fish (10.70 ± 0.07 g) per tank (300 L). The fish were fed twice daily to apparent satiation. A 56-day feeding trial was conducted to evaluate the impacts of defatted BSFL meal replacing FM on the growth performance, feed efficiency, composition analysis of fish muscle, cumulative mortality rate challenged with Vibrio parahaemolyticus, and economic returns of L. calcarifer. These results show that differences in weight gain and specific growth rate among the different treatments were statistically significant (p  BSFL0 > BSFL5 > BSFL15 > BSFL20. However, the feed conversion ratio and protein efficiency ratio showed the opposite trend as above. Although the diets experienced a decline in crude protein content and an increase in crude fat content with the increasing proportion of BSFL substituting FM, the crude protein and fat content of fish muscle were only slightly influenced. It is worth mentioning that levels of nonessential amino acids, delicious amino acids, saturated fatty acids, omega-6, omega-9 in BSFL10 group all showed an increase compared with the control group. After a 7-day challenge test with V. parahaemolyticus, the cumulative mortality rates of the BSFL5 and BSFL10 groups, respectively, dropped to 5.20%, 5.28% compared to the control group's 16.88%; however, the mortality rates of BSFL15 (34.67%) and BSFL20 (41.77%) groups were found to be significantly (p 15%) leads to a negative effect. From an economic point of view, 10% inclusion of BSFL in practical diets is recommended for L. calcarifer juveniles.
  13. Goh JE, Rahman AY, Hari R, Lim MP, Najimudin N, Yap WS, et al.
    Microbiol Resour Announc, 2020 May 21;9(21).
    PMID: 32439681 DOI: 10.1128/MRA.01485-19
    A type strain of Lactarius deliciosus was obtained from the CBS-KNAW culture collection. The mycelium was cultured using potato dextrose agar, and the extracted genomic DNA was subjected to PacBio genome sequencing. Upon assembly and annotation, the genome size was estimated to be 54 Mbp, with 12,753 genes.
  14. De Silva C, Nawawi NM, Abd Karim MM, Abd Gani S, Masarudin MJ, Gunasekaran B, et al.
    Animals (Basel), 2021 Jul 14;11(7).
    PMID: 34359224 DOI: 10.3390/ani11072097
    Nanotechnology is a rapidly developing field due to the emergence of various resistant pathogens and the failure of commercial methods of treatment. AgNPs have emerged as one of the best nanotechnology metal nanoparticles due to their large surface-to-volume ratio and success and efficiency in combating various pathogens over the years, with the biological method of synthesis being the most effective and environmentally friendly method. The primary mode of action of AgNPs against pathogens are via their cytotoxicity, which is influenced by the size and shape of the nanoparticles. The cytotoxicity of the AgNPs gives rise to various theorized mechanisms of action of AgNPs against pathogens such as activation of reactive oxygen species, attachment to cellular membranes, intracellular damage and inducing the viable but non-culturable state (VBNC) of pathogens. This review will be centred on the various theorized mechanisms of actions and its application in the aquaculture, livestock and poultry industries. The application of AgNPs in aquaculture is focused around water treatment, disease control and aquatic nutrition, and in the livestock application it is focused on livestock and poultry.
  15. Sok Yen F, Shu Qin C, Tan Shi Xuan S, Jia Ying P, Yi Le H, Darmarajan T, et al.
    PMID: 34925525 DOI: 10.1155/2021/2057333
    Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.
  16. Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV, et al.
    Biomed Res Int, 2021;2021:5550938.
    PMID: 34285915 DOI: 10.1155/2021/5550938
    Alzheimer's disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer's disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer's disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer's disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer's disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer's disease as well as its challenges.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links