Displaying publications 1 - 20 of 301 in total

  1. Amin ZA, Ali HM, Alshawsh MA, Darvish PH, Abdulla MA
    PMID: 26557855 DOI: 10.1155/2015/317693
    Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson's trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation.
  2. Seyedan A, Alshawsh MA, Alshagga MA, Koosha S, Mohamed Z
    PMID: 26640503 DOI: 10.1155/2015/973143
    Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.
  3. Abu Bakar MF, Abdul Karim F, Suleiman M, Isha A, Rahmat A
    PMID: 26640502 DOI: 10.1155/2015/936215
    The study aimed to investigate the phytochemical contents, antioxidant and antiproliferative activity of 80% methanol extract of Lepidozia borneensis. The total phenolic and total flavonoid contents were analysed using Folin-Ciocalteu and aluminium chloride colorimetric methods. Antioxidant properties were evaluated by using FRAP, ABTS, and DPPH assays while the effects of L. borneensis on the proliferation of MCF-7 cell line were evaluated by using MTT assay. The results showed that the total phenolic and flavonoid contents were 12.42 ± 0.47 mg GAE/g and 9.36 ± 1.29 mg CE/g, respectively. The GC-MS analysis revealed the presence of at least 35 compounds. The extract was found to induce cytotoxicity against MCF-7 cell line with IC50 value of 47.33 ± 7.37 µg/mL. Cell cycle analysis showed that the extract induced significant arrest at G0/G1 at 24 hours of treatment. After 72 hours of treatment, the proportion of cells in G0/G1 and G2-M phases had decreased significantly as compared to their control. Apoptosis occurred during the first 24 hours and significantly increased to 30.8% after 72 hours of treatment. No activation of caspase 3 was observed. These findings suggest that L. borneensis extract has the potential as natural antioxidant and anticancer agents.
  4. Azmi NH, Ismail M, Ismail N, Imam MU, Alitheen NB, Abdullah MA
    PMID: 26858770 DOI: 10.1155/2015/153684
    The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.
  5. Mohamad Zaid SS, Kassim NM, Othman S
    PMID: 26788107 DOI: 10.1155/2015/202874
    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties.
  6. Baskaran G, Salvamani S, Azlan A, Ahmad SA, Yeap SK, Shukor MY
    PMID: 26697097 DOI: 10.1155/2015/751714
    Hypercholesterolemia is the major risk factor that leads to atherosclerosis. Nowadays, alternative treatment using medicinal plants gained much attention since the usage of statins leads to adverse health effects, especially liver and muscle toxicity. This study was designed to investigate the hypocholesterolemic and antiatherosclerotic effects of Basella alba (B. alba) using hypercholesterolemia-induced rabbits. Twenty New Zealand white rabbits were divided into 5 groups and fed with varying diets: normal diet, 2% high cholesterol diet (HCD), 2% HCD + 10 mg/kg simvastatin, 2% HCD + 100 mg/kg B. alba extract, and 2% HCD + 200 mg/kg B. alba extract, respectively. The treatment with B. alba extract significantly lowered the levels of total cholesterol, LDL, and triglycerides and increased HDL and antioxidant enzymes (SOD and GPx) levels. The elevated levels of liver enzymes (AST and ALT) and creatine kinase were noted in hypercholesterolemic and statin treated groups indicating liver and muscle injuries. Treatment with B. alba extract also significantly suppressed the aortic plaque formation and reduced the intima: media ratio as observed in simvastatin-treated group. This is the first in vivo study on B. alba that suggests its potential as an alternative therapeutic agent for hypercholesterolemia and atherosclerosis.
  7. Nordin MA, Abdul Razak F, Himratul-Aznita WH
    PMID: 26633986 DOI: 10.1155/2015/918624
    Bakuchiol is an active component of Psoralea glandulosa and Psoralea corylifolia, used in traditional Chinese medicine. The study aimed at investigating the antifungal activity of bakuchiol on planktonic and biofilm forms of orally associated Candida species. The antifungal susceptibility testing was determined by the broth micro dilution technique. Growth kinetics and cell surface hydrophobicity (CSH) of Candida were measured to assess the inhibitory effect of bakuchiol on Candida planktonic cells. Biofilm biomass and cellular metabolic activity were quantitatively estimated by the crystal violet (CV) and the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assays. All Candida strains have been shown to be susceptible to bakuchiol with the MIC ranges from 12.5 to 100 μg/mL. Significant decrease in specific growth rates and viable counts demonstrates the inhibitory effect of bakuchiol on Candida planktonic cells. A brief exposure to bakuchiol also reduced CSH of Candida (P < 0.05), indicating altered surface properties of yeast cells towards hydrophobic interfaces. Biofilm biomass and cell metabolic activity were mostly decreased, except for C. glabrata (P = 0.29). The antifungal properties of bakuchiol on Candida species in this in vitro study may give insights into the application in therapeutic strategy against Candida infections.
  8. Cheng SH, Ismail A, Anthony J, Ng OC, Hamid AA, Barakatun-Nisak MY
    PMID: 26713097 DOI: 10.1155/2015/405615
    Objectives. Optimizing glycemic control is crucial to prevent type 2 diabetes related complications. Cosmos caudatus is reported to have promising effect in improving plasma blood glucose in an animal model. However, its impact on human remains ambiguous. This study was carried out to evaluate the effectiveness of C. caudatus on glycemic status in patients with type 2 diabetes. Materials and Methods. In this randomized controlled trial with two-arm parallel-group design, a total of 101 subjects with type 2 diabetes were randomly allocated to diabetic-ulam or diabetic controls for eight weeks. Subjects in diabetic-ulam group consumed 15 g of C. caudatus daily for eight weeks while diabetic controls abstained from taking C. caudatus. Both groups received the standard lifestyle advice. Results. After 8 weeks of supplementation, C. caudatus significantly reduced serum insulin (-1.16 versus +3.91), reduced HOMA-IR (-1.09 versus +1.34), and increased QUICKI (+0.05 versus -0.03) in diabetic-ulam group compared with the diabetic controls. HbA1C level was improved although it is not statistically significant (-0.76% versus -0.37%). C. caudatus was safe to consume. Conclusions. C. caudatus supplementation significantly improves insulin resistance and insulin sensitivity in patients with type 2 diabetes.
  9. Sabran SF, Mohamed M, Abu Bakar MF
    PMID: 26881002 DOI: 10.1155/2016/2850845
    This study documented ethnomedical knowledge of plants used for the treatment of tuberculosis (TB) and its related symptoms as practiced by the Jakun community of Kampung Peta, situated in Endau Rompin Johor National Park, Johor, Malaysia. Eight key informants were selected by snowball sampling technique and data about medicinal plants were collected by semistructured interviews, participatory observations, and focus group. Qualitative analysis was undertaken using thematic analysis. There were 23 species of plants (22 genera, 20 families) documented and herbarium specimens were deposited at the UTHM Herbarium. Dipterocarpus sublamellatus was recorded for the first time with ethnomedical uses while other species were previously reported. The qualitative approach employed in this study demonstrates the emic perspective in terms of perceptions on traditional herbal medicine, transfer of knowledge, significant taboos related with medicinal plants, and their conservation efforts. Local and biomedical terminology in treatment of TB showed substantial correspondence. The outcomes obtained in the study are worth being further investigated for conservation strategies and are worthy of verifying their ethnomedical claims scientifically.
  10. Leong LM, Chan KM, Hamid A, Latip J, Rajab NF
    PMID: 26884792 DOI: 10.1155/2016/2091085
    The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.
  11. Mohd Sairazi NS, Sirajudeen KN, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA
    PMID: 26793262 DOI: 10.1155/2015/972623
    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.
  12. Swamy MK, Sinniah UR, Akhtar MS
    PMID: 26783409 DOI: 10.1155/2015/506413
    We investigated the effect of different solvents (ethyl acetate, methanol, acetone, and chloroform) on the extraction of phytoconstituents from Lantana camara leaves and their antioxidant and antibacterial activities. Further, GC-MS analysis was carried out to identify the bioactive chemical constituents occurring in the active extract. The results revealed the presence of various phytocompounds in the extracts. The methanol solvent recovered higher extractable compounds (14.4% of yield) and contained the highest phenolic (92.8 mg GAE/g) and flavonoid (26.5 mg RE/g) content. DPPH radical scavenging assay showed the IC50 value of 165, 200, 245, and 440 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. The hydroxyl scavenging activity test showed the IC50 value of 110, 240, 300, and 510 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. Gram negative bacterial pathogens (E. coli and K. pneumoniae) were more susceptible to all extracts compared to Gram positive bacteria (M. luteus, B. subtilis, and S. aureus). Methanol extract had the highest inhibition activity against all the tested microbes. Moreover, methanolic extract of L. camara contained 32 bioactive components as revealed by GC-MS study. The identified major compounds included hexadecanoic acid (5.197%), phytol (4.528%), caryophyllene oxide (4.605%), and 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (3.751%).
  13. Mohamed EA, Ahmad M, Ang LF, Asmawi MZ, Yam MF
    PMID: 26649063 DOI: 10.1155/2015/754931
    In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3'hydroxy-5,6,7,4'-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus.
  14. George A, Chinnappan S, Choudhary Y, Choudhary VK, Bommu P, Wong HJ
    PMID: 26649059 DOI: 10.1155/2015/375837
    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory.
  15. Lokman EF, Gu HF, Wan Mohamud WN, Östenson CG
    PMID: 26199630 DOI: 10.1155/2015/120572
    Aims. To evaluate the antidiabetic effects of Gynostemma pentaphyllum (GP) in Goto-Kakizaki (GK) rat, an animal model of type 2 diabetes, and to investigate the mechanisms of insulin release. Methods. Oral glucose tolerance test was performed and plasma insulin levels were measured. Results. An oral treatment with GP (0.3 g/kg of body weight daily) for two weeks in GK rats improved glucose tolerance versus placebo group (P < 0.01). Plasma insulin levels were significantly increased in the GP-treated group. The insulin release from GP-treated GK rats was 1.9-fold higher as compared to the control group (P < 0.001). GP stimulated insulin release in isolated GK rat islets at high glucose. Opening of ATP-sensitive potassium (K-ATP) channels by diazoxide and inhibition of calcium channels by nifedipine significantly decreased insulin response to GP. Furthermore, the protein kinase A (PKA) inhibitor H89 decreased the insulin response to GP (P < 0.05). In addition, GP-induced insulin secretion was decreased after preincubation of GK islets with pertussis toxin to inhibit exocytotic Ge proteins (P < 0.05). Conclusion. The antidiabetic effect of GP is associated with the stimulation of insulin release from the islets. GP-induced insulin release is partly mediated via K-ATP and L-type Ca(2+) channels, the PKA system and also dependent on pertussis toxin sensitive Ge-protein.
  16. Tan LT, Lee LH, Yin WF, Chan CK, Abdul Kadir H, Chan KG, et al.
    PMID: 26294929 DOI: 10.1155/2015/896314
    Ylang-ylang (Cananga odorata Hook. F. & Thomson) is one of the plants that are exploited at a large scale for its essential oil which is an important raw material for the fragrance industry. The essential oils extracted via steam distillation from the plant have been used mainly in cosmetic industry but also in food industry. Traditionally, C. odorata is used to treat malaria, stomach ailments, asthma, gout, and rheumatism. The essential oils or ylang-ylang oil is used in aromatherapy and is believed to be effective in treating depression, high blood pressure, and anxiety. Many phytochemical studies have identified the constituents present in the essential oils of C. odorata. A wide range of chemical compounds including monoterpene, sesquiterpenes, and phenylpropanoids have been isolated from this plant. Recent studies have shown a wide variety of bioactivities exhibited by the essential oils and the extracts of C. odorata including antimicrobial, antibiofilm, anti-inflammatory, antivector, insect-repellent, antidiabetic, antifertility and antimelanogenesis activities. Thus, the present review summarizes the information concerning the traditional uses, phytochemistry, and biological activities of C. odorata. This review is aimed at demonstrating that C. odorata not only is an important raw material for perfume industry but also considered as a prospective useful plant to agriculture and medicine.
  17. Guilhon CC, Abdul Wahab IR, Boylan F, Fernandes PD
    PMID: 26273315 DOI: 10.1155/2015/915927
    Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
  18. Xu J, Cheng KK, Yang Z, Wang C, Shen G, Wang Y, et al.
    PMID: 26170882 DOI: 10.1155/2015/801691
    Gastric mucosal lesion (GML) is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM), electroacupuncture (EA) treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- ((1)H NMR-) based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM) acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM) acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture.
  19. Hussan F, Mansor AS, Hassan SN, Tengku Nor Effendy Kamaruddin TN, Budin SB, Othman F
    PMID: 26300946 DOI: 10.1155/2015/347861
    Hepatic injury induces inflammatory process and cell necrosis. Plantago major is traditionally used for various diseases. This study aimed to determine the anti-inflammatory property of P. major leaf extracts on inflammatory reaction following acetaminophen (APAP) hepatotoxicity. Thirty male Sprague-Dawley rats were divided into 5 groups, namely, normal control (C), APAP, aqueous (APAP + AQ), methanol (APAP + MT), and ethanol (APAP + ET) extract treated groups. All APAP groups received oral APAP (2 g/kg) at day 0. Then, 1000 mg/kg dose of P. major extracts was given for six days. The levels of liver transaminases were measured at day 1 and day 7 after APAP induction. At day 7, the blood and liver tissue were collected to determine plasma cytokines and tissue 11β-HSD type 1 enzyme. The in vitro anti-inflammatory activities of methanol, ethanol, and aqueous extracts were 26.74 ± 1.6%, 21.69 ± 2.81%, and 12.23 ± 3.15%, respectively. The ALT and AST levels were significantly higher in the APAP groups at day 1 whereas the enzyme levels of all groups showed no significant difference at day 7. The extracts treatment significantly reduced the proinflammatory cytokine levels and significantly increased the 11β-HSD type 1 enzyme activity (p < 0.05). In conclusion, the P. major extracts attenuate the inflammatory reaction following APAP-induced liver injury.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links