Displaying all 5 publications

Abstract:
Sort:
  1. Habib MAH, Ismail MN
    J Food Biochem, 2021 07;45(7):e13817.
    PMID: 34137461 DOI: 10.1111/jfbc.13817
    The fruit and leaf of God's crown (Phaleria macrocarpa) have been traditionally used to treat a wide variety of diseases. However, the proteins of this tropical plant are still heavily understudied. Three protein extraction methods; phenol (Phe), trichloroacetic acid (TCA)-acetone-phenol (TCA-A-Phe), and ultrasonic (Ult) were compared on the fruit and leaf of P. macrocarpa. The Phe extraction method showed the highest percentage of recovered protein after the resolubilization process for both leaf (12.24%) and fruit (30.41%) based on protein yields of the leaf (6.15 mg/g) and fruit (36.98 mg/g). Phe and TCA-A-Phe extraction methods gave well-resolved bands over a wide range of molecular weights through sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following liquid chromatography-tandem mass spectrometry analysis, proteins identified through the Phe extraction method were 30%-35% enzymatic proteins, including oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases that possess various biological functions. PRACTICAL APPLICATIONS: Every part of God's crown plant is traditionally consumed to treat various illnesses. While plant's benefits are well known and have led to a plethora of health products, the proteome remains mostly unknown. This study compares three protein extraction methods for the leaf and fruit of P. macrocarpa and identifies their proteins thru LC-MS/MS coupled with PEAKS. These method comparisons can be a guide for works on other plants as well. In addition, the proteomics data from this study may shed light on the functional properties of these plant parts and their products.
  2. Habib MAH, Ismail MN
    J Plant Res, 2021 Jan;134(1):43-53.
    PMID: 33108557 DOI: 10.1007/s10265-020-01231-x
    Natural rubber or latex from the Hevea brasiliensis is an important commodity in various economic sectors in today's modern society. Proteins have been detected in latex since the early twentieth century, and they are known to regulate various biological pathways within the H. brasiliensis trees such as the natural rubber biosynthesis, defence against pathogens, wound healing, and stress tolerance. However, the exact mechanisms of the pathways are still not clear. Proteomic analyses on latex have found various proteins and revealed how they fit into the mechanisms of the biological pathways. In the past three decades, there has been rapid latex protein identification due to the improvement of latex protein extraction methods, as well as the emergence of two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). In this manuscript, we reviewed the methods of latex protein extraction that keeps on improving over the past three decades as well as the results of numerous latex protein identification and quantitation.
  3. Habib MAH, Gan CY, Abdul Latiff A, Ismail MN
    Biochem. Cell Biol., 2018 12;96(6):818-824.
    PMID: 30058361 DOI: 10.1139/bcb-2018-0020
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in modern society. Post-translational modifications (PTMs) of the latex proteins are important for the stability and functionality of the proteins. In this study, latex proteins were acquired from the C-serum, lutoids, and rubber particle layers of latex without using prior enrichment steps; they were fragmented using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron-transfer dissociation (ETD) activation methods. PEAKS 7 were used to search for unspecified PTMs, followed by analysis through PTM prediction tools to crosscheck both results. There were 73 peptides in 47 proteins from H. brasiliensis protein sequences derived from UniProtKB were identified and predicted to be post-translationally modified. The peptides with PTMs identified include phosphorylation, lysine acetylation, N-terminal acetylation, hydroxylation, and ubiquitination. Most of the PTMs discovered have yet to be reported in UniProt, which would provide great assistance in the research of the functional properties of H. brasiliensis latex proteins, as well as being useful biomarkers. The data are available via the MassIVE repository with identifier MSV000082419.
  4. Mohd Afandi NS, Habib MAH, Ismail MN
    Physiol Mol Biol Plants, 2022 Feb;28(2):471-484.
    PMID: 35400887 DOI: 10.1007/s12298-022-01145-z
    Hevea brasiliensis is one of the most important agricultural commodities globally, heavily cultivated in Southeast Asia. Fatal leaf fall diseases cause aggressive leaf defoliation, linked to lower latex yield and death of crops before maturity. Due to the significant consequences of the disease to H. brasiliensis, the recent gene expression studies from four fall leaf diseases of H. brasiliensis were gathered; South American leaf blight, powdery mildew, Corynespora cassiicola and Phytophthora leaf fall disease. The differential analysis observed the pattern of commonly expressed genes upon fungi triggers using RT-PCR, DDRT-PCR, Real-time qRT-PCR and RNA-Seq. We have observed that RNA-Seq is the best tool to seek novel genes. Among the identified genes with defence-against fungi were pathogenesis-related genes such as β-1,3-glucanase and chitinase, the reactive oxygen species, and the phytoalexin biosynthesis. This manuscript also provided functional elaboration on the responsive genes and predicted possible biosynthetic pathways to identify and characterise novel genes in the future. At the end of the manuscript, the PCR methods and proteomic approaches were presented for future molecular and biochemical studies in the related diseases to H. brasiliensis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links