Several new concepts are used to describe contraceptive use histories for nearly 1200 women in Peninsular Malaysia. These histories are summarized by 81 episode histories. Transition matrices provide useful summaries of the changes women make in their contraceptive practice from one pregnancy interval to the next. Data from the mid-1940s to mid-1970s, during which period there was a dramatic increase in contraceptive use, reveal considerable inertia in individual couples' contraceptive practice. Persistence with a method was greater the less effective the method: while 86% of couples using no method in one interval used no method in the next, only 56% of couples using the pill in one interval also used it in the next. Virtually all transitions are of three types: continuation with the same method, a change from no method to some method, or a change from some method to no method. For only 1% of all pregnancies did couples use one contraceptive method before a pregnancy and a different method after the pregnancy. Differences are examined by calendar year and education.
Anterior Cruciate Ligament (ACL) injuries are becoming more prevalent in athletes. Anterior Cruciatum Ligament Reconstruction (ACLR) surgery was used to treat ACL injuries and resulted in a recurrence rate of 94% due to the biomechanically repaired tissue being weaker than the original tissue. As a result, biodegradable artificial ligaments must be developed that can withstand mechanical stress during neoligament formation and stabilize the ACL. The purpose of this study is to determine the effect of composition variations in polylactic acid (PLA) and polycaprolactone (PCL) used as ACL nanofiber scaffolds on ultimate tensile strength (UTS) and modulus of elasticity, fiber diameter, cytotoxicity level, and degradation level, as well as the PLA-PCL concentration that provides the best value as an ACL scaffold. Electrospinning was used to fabricate the nanofiber scaffold with the following PLA-PCL compositions: A (100:0), B (85:15), C (80:20), D (70:30), and E (0:100) (wt%). The functional group test revealed no new peaks in any of the samples, and the ester group could be identified in the C-O bond at wave numbers 1300-1100 cm-1 and in the C=O bond at wave numbers 1750-1730 cm-1. The average fiber diameter, as determined by SEM morphology, is between 1000 and 2000 nm. The unbraided sample had a UTS range of 1.578-4.387 MPa and an elastic modulus range of 8.351-141.901 MPa, respectively, whereas the braided sample had a range of 0.879-1.863 MPa and 2.739-4.746 MPa. The higher the PCL composition, the lower the percentage of viable cells and the faster the sample degrades. All samples had a cell viability percentage greater than 60%, and samples C, D, and E had a complete degradation period greater than six months. The ideal scaffold, Sample C, was composed of PLA-PCL 80:20 (wt%), had an average fiber diameter of 827 ± 271 nm, a living cell percentage of 97.416 ± 5.079, and a degradation time of approximately 219 days.
Knee injuries are musculoskeletal system injuries, including the Anterior Cruciate Ligament (ACL). ACL injuries are most common in athletes. This ACL injury necessitates biomaterial replacement. It is sometimes taken from the patient's tendon and a biomaterial scaffold is used. The use of biomaterial scaffolds as artificial ACLs remains to be investigated. The purpose of this study is to determine the properties of an ACL scaffold made of polycaprolactone (PCL)-hydroxyapatite (HA) and collagen with various composition variations of (50 : 45 : 5), (50 : 40 : 10), (50 : 35 : 15), (50 : 30 : 20), and (50 : 25 : 25) wt%. The scaffold was created using the electrospinning method with a voltage of 23 kV, a needle-collector distance of 15 cm, and a solution flow rate of 2 mL h-1. The average fiber diameter in all samples was less than 1000 nm. The model with the best characterization was PCL : HA : collagen with a weight-to-weight (wt%) ratio of 50 : 45 : 5 and an average fiber diameter of 488 ± 271 nm. The UTS and modulus of elasticity for braided samples were 2.796 MPa and 3.224 MPa, respectively, while the non-braided samples were 2.864 MPa and 12.942 MPa. The estimated time of degradation was 9.44 months. It was also revealed to be non-toxic, with an 87.95% viable cell percentage.
Agricultural plantations in Indonesia and Malaysia yield substantial waste, necessitating proper disposal to address environmental concerns. Yet, these wastes, rich in starch and lignocellulosic content, offer an opportunity for value-added product development, particularly amino acid production. Traditional methods often rely on costly commercial enzymes to convert biomass into fermentable sugars for amino acid production. An alternative, consolidated bioprocessing, enables the direct conversion of agricultural biomass into amino acids using selected microorganisms. This review provides a comprehensive assessment of the potential of agricultural biomass in Indonesia and Malaysia for amino acid production through consolidated bioprocessing. It explores suitable microorganisms and presents a case study on using Bacillus subtilis ATCC 6051 to produce 9.56 mg/mL of amino acids directly from pineapple plant stems. These findings contribute to the advancement of sustainable amino acid production methods using agricultural biomass especially in Indonesia and Malaysia through consolidated bioprocessing, reducing waste and enhancing environmental sustainability.
A new 2-arylbenzofuran, sesbagrandiflorain C (1), together with four known compounds, 2-(3,4-dihydroxy-2-methoxyphenyl)-4-hydroxy-6-methoxybenzofuran-3-carbaldehyde (2), 2-(4-hydroxy-2-methoxyphenyl)-5,6-dimethoxybenzofuran-3-carboxaldehyde (3), sesbagrandiflorain A (4) and sesbagrandiflorain B (5), have been isolated from the stem bark of an Indonesian plant, Sesbania grandiflora (L.) Pers. The chemical structure of compound 1 was elucidated by UV, IR, MS, and NMR spectroscopic techniques. The proton and carbon NMR resonances of 1 were also compared with the predicted chemical shifts obtained from DFT quantum mechanical calculations with Gaussian. None of the compounds showed antibacterial activity against Bacillus subtilis, Escherichia coli, Mycobacterium smegmatis, Pseudomonas aeruginosa, and Staphylococcus aureus in an agar diffusion assay. However, sesbagrandiflorains A (4) and B (5) exhibited moderate activity against Mycobacterium tuberculosis H37Rv. In addition, compounds 1 - 5 have moderate cytotoxicity against HeLa, HepG2, and MCF-7 cancer cell lines.
One approach to addressing bone defects involves the field of bone tissue engineering, with scaffolds playing an important role. The properties of the scaffold must be similar to those of natural bone, including pore size, porosity, interconnectivity, mechanical attributes, degradation rate, non-toxicity, non-immunogenicity, and biocompatibility. The primary goals of this study are as follows: first, to evaluate hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin nanofiber scaffolds based on functional groups, fibre diameter, porosity, and degradation rate; second, to investigate the interaction between HA/PCL/gelatin scaffolds and osteoblast cells (specifically, the ATCC 7F2 cell line) using in vitro assays, including cell viability and adhesion levels. The fibre samples were fabricated using an electrospinning technique with a 15 kV voltage, a spinneret-collector distance of 10 cm, and a flow rate of 0.3 mL hour-1. The process was applied to five different HA/PCL/gelatin concentration ratios: 50 : 40 : 10; 50 : 30 : 20; 50 : 25 : 25; 50 : 20 : 30; 50 : 35 : 15 (in %wt). Fourier Transform Infrared (FTIR) spectrum analysis and tests revealed no differences in functional groups across the five compositions. The identified functional groups include PO4 3-, OH-, CO3 2- and C[double bond, length as m-dash]O stretching. Notably, an increase in PCL concentrations resulted in larger fiber diameters, ranging from 369-1403 nm with an average value of 929 ± 175 nm. The highest porosity percentage was (77.27 ± 11.57) %, and a sufficient degradation rate of up to 3.5 months facilitated the proliferation process of osteoblast cells. Tensile strength assessments revealed a significant increase in tensile strength with the addition of PCL, reaching a peak of 1.93 MPa. The MTT assay demonstrated a discernible increase in cell proliferation, as evidenced by increased cell viability percentages on days 1, 3, and 5. Concurrently, the fluorescence microscopy examination indicated an increase in cell numbers, which was especially noticeable on days 1 and 5. The SEM analysis confirmed the biocompatibility of the HA/PCL/gelatin nanofiber scaffold, as osteoblast cells attached and dispersed successfully five days after seeding. Based on these findings, the HA/PCL/gelatin nanofiber scaffold emerges as a very promising candidate for treating bone damage.