PATIENTS AND METHODS: Sixty clinical A. fumigatus isolates were collected and subjected to antifungal susceptibility testing (AFST) and molecular analysis. The antifungal susceptibility testing was performed according to CLSI M38 guideline. The geometric mean (GM) minimum inhibitory concentration (MIC), MIC50/MIC90 for voriconazole, itraconazole, posaconazole, amphotericin B, and isavuconazole against A. fumigatus in non-invasive cases and invasive cases were calculated. In addition, the presence of cyp51A mutations was also identified.
RESULTS: The present study revealed an overall resistance rate of 6.7% among the isolates. In non-invasive cases, isavuconazole and posaconazole demonstrated the lowest GM MIC of 0.08 µg/mL. Following them were itraconazole, voriconazole, and amphotericin B with concentrations of 0.15µg/mL, 0.16µg/mL and 0.90µg/mL, respectively. Similarly, in invasive cases, isavuconazole and posaconazole exhibited the lowest GM MIC of 0.09µg/mL. Following them were itraconazole, voriconazole, and amphotericin B with concentrations of 0.14µg/mL, 0.17µg/mL and 0.80µg/mL, respectively. Genotypic analysis revealed various cyp51A mutations, including F46Y, M172V, N248K, R34L, V244A, V244S, and E427K. However, not all mutations corresponded to antifungal resistance.
CONCLUSION: The majority of clinical Aspergillus fumigatus isolates demonstrated susceptibility to the antifungal agents tested, with isavuconazole and posaconazole demonstrating the lowest MIC values. However, cyp51A mutations were discovered without a consistent correlation to antifungal resistance, emphasising the need for additional research.
RESULTS: The comparison between core and pan-genomic comparison showed variation in the distribution of C. diphtheriae. The local isolates portrayed a heterogenous trait and a close relationship between Malaysia's and Belarus's, Africa's and India's strains were observed. A toxigenic C. diphtheriae clone was noted to be circulating in the Malaysian population for nearly 30 years and from our study, the non-toxigenic and toxigenic C. diphtheriae strains can be differentiated significantly into two large clusters, A and B respectively. Analysis against vaccine strain, PW8 portrayed that the amino acid composition of toxin and DtxR in Malaysia's local strains are well-conserved and there was no functional defect noted. Hence, the change in efficacy of the currently used toxoid vaccine is unlikely to occur.