Displaying all 3 publications

Abstract:
Sort:
  1. Huey SM, Hock CC, Lin SW
    J Food Sci, 2009 May-Jul;74(4):E177-83.
    PMID: 19490322 DOI: 10.1111/j.1750-3841.2009.01122.x
    The lipase-catalyzed interesterification of refined, bleached, deodorized palm olein with iodine value (IV) of 62 was studied in a pilot continuous packed-bed reactor operating at 65 degrees C. Sn-1,3 specific immobilized enzyme; Lipozyme TL IM (Thermomyces Lanuginosa) from Novozyme A/S was used in this study. The interesterification reaction produced fully solidified fats at ambient temperature due to the production of trisaturated triacylglycerols (TAG) (PPP and PPS, where P = palmitic acid, S = stearic acid). The reaction also increased the percentage of triunsaturated TAG (OLL, OLO, and OOO, where O = oleic acid, L = linoleic acid). The interesterified product was then dry fractionated at temperatures of 9, 12, 15, 18, and 21 degrees C to separate the saturated fats from the unsaturated. The results show that IV of olein increased when the fractionation temperature (T(FN)) decreased. The highest IV of olein was 72, obtained from T(FN) at 9 degrees C. After interesterification and laboratory-scale fractionation, the olein fractions contained higher unsaturation content ranging from 64.7% to 67.7% compared to the starting material (58.3%), while the saturation content was reduced from 41.7% to the range of 32.3% to 35.3%. The yields of these oleins were low with the range of 24.8% to 51.8% due to the limitation of the vacuum filtration. Ten kilograms of pilot-scale fractionation with membrane press filter was used to determine the exact olein yield. At T(FN) of 12 degrees C, 67.1% of olein with saturation content of 33.9% was obtained.
  2. Han NM, May CY, Ngan MA, Hock CC, Ali Hashim M
    J Chromatogr Sci, 2005 3 17;42(10):536-9.
    PMID: 15768840
    Crude palm oil contains 600 to 1000 ppm of tocols in the form of tocopherols and tocotrienols. These palm tocols have been isolated and analyzed in the past by various chromatographic techniques such as open column chromatography, high-performance liquid chromatography, as well as thin-layer chromatography. Supercritical fluid chromatography (SFC) has emerged as a more advanced chromatographic technique in recent years. The tocols present in palm oil are successfully isolated using SFC. Identification of these tocols is supported by various spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry.
  3. Yang J, Xu S, Chee CY, Ching KY, Wei Y, Wang R, et al.
    Int J Biol Macromol, 2024 Feb;258(Pt 2):129037.
    PMID: 38158061 DOI: 10.1016/j.ijbiomac.2023.129037
    The present work systematically investigated the influence of starch silylation on the structures and properties of starch/epoxidized soybean oil-based bioplastics. Silylated starch was synthesized using starch particles (SP-ST) or gelatinized starch (SG-ST) under different silane hydrolysis pHs. Due to the appearance of -NH2 groups and lower OH wavenumbers, SP-ST obtained at pH 5 showed higher silylation degree and stronger hydrogen bond interaction with epoxidized soybean oils (ESO) than that at pH 11. The morphology analysis revealed better interfacial compatibility of ESO and SP-ST. The tensile strength of the samples containing SP-ST increased by 51.91 % than the control, emphasizing the enhanced interaction within the bioplastics. However, tensile strength of the bioplastics with SG-ST decreased by 59.56 % due to their high moisture contents from unreacted silanes. Additionally, the bioplastics with SG-ST exhibited an obvious reduction of thermal stability and an increase in water solubility because of the presence of unreacted APMS. The bioplastic degradation was not prevented by starch silylation except high pH. The bioplastics showed the most desirable tensile properties, thermal stability, and water solubility when starch was surface-modified with silanes hydrolyzed at pH 5. These outcomes made the fabricated bioplastics strong candidates for petroleum-based plastics for packaging applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links