Displaying all 3 publications

Abstract:
Sort:
  1. Iber BT, Kasan NA
    Heliyon, 2021 Nov;7(11):e08283.
    PMID: 34778576 DOI: 10.1016/j.heliyon.2021.e08283
    Aquaculture has been celebrated globally and believed to usher in a viable alternative to capture fisheries. It is most welcomed especially now that the world population explosion has pushed the demand on fisheries products to worrisome limits. Shrimp farming is an area of aquaculture that has witnessed significant growth in recent years, contributing substantially to the global aquaculture production. However, intensification of shrimp aquaculture has come with unintended consequences such as wastewater management and other problems emanating from environmental impact of the wastewater. This study identified excess feed and fertilizer application, metabolite wastes, shrimp mortalities, oil spillage from farm machines, drug and chemical abuse as some of the activities contributing to wastewater generation in shrimp aquaculture farming. The impact of shrimp effluent water discharged has been observed to be socio-economic with both positive and negative dimensions. In attempt to overcome the overwhelming problems associated with shrimp effluent water and bring reassurances to its sustainability, a good number of new technological approaches have been identified including caviation, high-rate algal pond system, use of nanomaterials, biofloc technology, nanoadsorbent and polymeric nanoadsorbents. Although all have been proven to be useful, none could boast of a complete and integrated approach that considers all the technological, legal, social, environmental, public health and institutional concerns.
  2. Iber BT, Torsabo D, Chik C, Wahab F, Abdullah S, Abu Hassan H, et al.
    Heliyon, 2023 Mar;9(3):e13970.
    PMID: 36915541 DOI: 10.1016/j.heliyon.2023.e13970
    Unless better measures are put in place to address the environmental and social impacts emanating from the huge waste generated from sea food processing industries; 'tragedy of the commons' is inevitable. Needless to re-emphasise the enormous contributions of aquaculture as the perfect substitute to capture fisheries which has been proven unsustainable. Be that as it may, the huge amount of bio-waste produced could be transformed into useful products such as chitin and chitosan with far reaching applications. Chitin and chitosan have been consistently processed from many sources following the traditional chemical sequence of Demineralization (DM), Deproteinization (DP), Decolouration (DC) and Deacetylation (DA). In this study, this method was re-ordered, resulting to 4 sequences of chemical processes. HCl, NaOH, ethanol (97%) and NaOH (50%) were used for DM, DP, DC and DA respectively. The results of this study showed that better chitin (23.99 ± 0.61%) and chitosan (15.17 ± 1.69%) yields were obtained from sequence four (SQ4) following the order of DC-DM-DP-DA. In addition, physicochemical properties such as DDA (80.67 ± 2.52%) and solubility (66.43 ± 2.61%) were significantly higher (p ≤ 0.05) in SQ4 thereby making the obtained product suitable for use as coagulant and flocculant in wastewater treatment. Results of FTIR, XRD and SEM of the study proved that the resultant product exhibited the characteristic nature of chitosan with porous and fibril nature. In the analysis of the physical properties of chitosan obtained from bio-waste of Macrobrachium rosenbergii, the high Carr's index (CI) and low bulk as well as tapped densities were an indication that the chitosan produced in this study had poor flowability and compressibility, thereby making it unfit for application in pharmaceutical industries.
  3. Torsabo D, Ishak SD, Noordin NM, Koh ICC, Abduh MY, Iber BT, et al.
    Aquac Nutr, 2022;2022:7138012.
    PMID: 36860466 DOI: 10.1155/2022/7138012
    Dietary lipid manipulation in the feed of commercially cultured finfish is used not only to improve production and culture but also to enhance their reproductive performances. The inclusion of lipid in broodstock diet positively affects growth, immunological responses, gonadogenesis, and larval survival. In this review, existing literature on the importance of freshwater finfish species to aquaculture and the inclusion of dietary lipid compounds in freshwater fish feed to accelerate the reproduction rate is being summarized and discussed. Although lipid compounds have been confirmed to improve reproductive performance, only a few members of the most economically important species have reaped benefits from quantitative and qualitative lipid studies. There is a knowledge gap on the effective inclusion and utilization of dietary lipids on gonad maturation, fecundity, fertilization, egg morphology, hatching rate, and consequently, larval quality contributing to the survival and good performance of freshwater fish culture. This review provides a baseline for potential future research for optimizing dietary lipid inclusion in freshwater broodstock diets.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links