Displaying all 3 publications

Abstract:
Sort:
  1. Isa N, Osman MS, Abdul Hamid H, Inderan V, Lockman Z
    Int J Phytoremediation, 2023;25(5):658-669.
    PMID: 35858487 DOI: 10.1080/15226514.2022.2099345
    This study describes the synthesis of silver nanoparticles (AgNPs) using shortleaf spikesedge extract (SSE) to reduce AgNO3. Visual observation, in addition to analyses of UV-vis, EDX, XRD, FTIR, and TEM was employed to monitor the formation of AgNPs. The effects of SSE concentration, AgNO3 concentration, reaction time, pH, and temperature on the synthesis of AgNPs were studied based on the surface plasmon resonance (SPR) band. From the TEM image, highly-scattered AgNPs of quasi-spherical shape with an average particle size of 17.64 nm, were observed. For the catalytic study, the reduction of methylene blue (MB) was evaluated using two systems. A detailed batch study of the removal efficiency (%RE) and kinetics was done at an ambient temperature, various MB initial concentrations, and varying reaction time. Employing the electron relay effect in System 2, the batch study clearly highlighted the significant role of AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. The kinetic data best fitted the pseudo-first-order model with a maximum reaction rate of 2.5715 min-1. These findings suggest the promising application of AgNPs in dye wastewater treatment.The SSE-driven AgNPs were prepared using unwanted dried biomass of shortleaf spikesedge extract (SSE) as a reducing as well as stabilizing agent. Employing the electron relay effect, the batch study clearly highlighted the significant role of SSE-driven AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. In this sense, SSE-driven AgNPs acted as an electron relay point that behaves alternatively as acceptor and donor of electrons. The findings revealed the good catalytic performance of SSE-driven AgNPS, proving their viability for dye wastewater treatment.
  2. Inderan V, Arafat MM, Kumar S, Haseeb ASMA, Jiang ZT, Altarawneh M, et al.
    Nanotechnology, 2017 Jun 30;28(26):265702.
    PMID: 28593932 DOI: 10.1088/1361-6528/aa731c
    An ethanol gas sensor with enhanced sensor response was fabricated using Ni-doped SnO2 nanorods, synthesized via a simple hydrothermal method. It was found that the response (R = R 0/R g) of a 5.0 mol% Ni-doped SnO2 (5.0Ni:SnO2) nanorod sensor was 1.4 × 104 for 1000 ppm C2H5OH gas, which is about 13 times higher than that of pure SnO2 nanorods, (1.1 × 103) at the operating temperature of 450 °C. Moreover, for 50 ppm C2H5OH gas, the 5.0Ni:SnO2 nanorod sensor still recorded a significant response reading, namely 2.0 × 103 with a response time of 30 s and recovery time of 10 min. To investigate the effect of Ni dopant (0.5-5.0 mol%) on SnO2 nanorods, structural characterizations were demonstrated using field emission scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction (XRD) analysis, x-ray photoelectron spectroscopy and an ultraviolet-visible spectrometer. XRD results confirmed that all the samples consisted of tetragonal-shaped rutile SnO2 nanorods. It was found that the average diameter and length of the nanorods formed in 5.0Ni:SnO2 were four times smaller (∼6 and ∼35 nm, respectively) than those of the nanorods formed in pure SnO2 (∼25 and 150 nm). Interestingly, both samples had the same aspect ratio, ∼6. It is proposed that the high response of the 5.0Ni:SnO2 nanorod sensor can be attributed to the particle size, which causes an increase in the thickness of the charge depletion layer, and the presence of oxygen vacancies within the matrix of SnO2 nanorods.
  3. Inderan V, Arafat MM, Haseeb ASMA, Sudesh K, Lee HL
    Nanotechnology, 2020 Jun 29;31(42):425503.
    PMID: 32599573 DOI: 10.1088/1361-6528/aba0f1
    Tin (IV) oxide (SnO2) nanostructures are regarded as one of the most popular materials for conventional gas sensors, due to their high surface area and fast response in regard to most reducing and oxidizing gases. However, their high operating temperature (>200 °C) leads to high power consumption and limits their applications. Here, a new nanocomposite fiber materials, consisting of undoped and doped (nickel and palladium) SnO2 nanorods, polyaniline (PANI), and polyhydroxy-3-butyrate (P3HB) are synthesized via the hydrothermal method,followed by an in situ polymerization and electrospinning technique. The as-synthesized nanocomposites are tested using ethanol gas at different operating temperatures: 25 °C (room temperature), 60 °C, and 80 °C. The results reveal that all samples began to show a response at 80 °C. Pd:SnO2/PANI/P3HB nanocomposite fiber sensors demonstrate a relatively higher response than that of SnO2/PANI/P3HB and Ni:SnO2/PANI/P3HB nanocomposite sensors. At 80 °C , the Pd:SnO2/PANI/P3HB nanocomposite sensor records a response (R0/Rg ) of 1610, with a response time (Tres) of 90 s and a recovery time (Trec ) of 9 min in relation to 1000 ppm ethanol gas in N2. The sensor also displays a good level of response (R0/Rg = 200) at a low concentration level (50 ppm) of ethanol gas. Structural and chemical characterizations indicate that the ethanol gas sensing performance of Pd:SnO2/PANI/P3HB nanocomposite fibers can mainly be attributed to the p-n heterojunction, fiber geometry, and one-dimensional structure of SnO2 and to the presence of the Pd catalyst. This bio-nanocomposite fiber has the potential to be a breakthrough material in biodegradable low temperature ethanol sensing applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links