Displaying all 3 publications

Abstract:
Sort:
  1. Jafarizadeh Malmiri, H., Osman, A., Tan, C.P., Abdul Rahman, R.
    MyJurnal
    Response surface methodology (RSM) was used to optimize the concentrations of chitosan and glycerol for coating Berangan banana (Musa sapientum cv. Berangan). The effects of main edible coating components, chitosan (0.5-2.5%, w/w) and glycerol (0-2%, w/w) on weight loss, firmness, total colour difference, total soluble solids content (TSS) and titratable acidity (TA) of coated banana were studied during 10 days of storage at 26±2°C and 40-50% relative humidity. Results showed that the experimental data could be adequately fitted into a second-order polynomial model with coefficient of determination (R 2 ) ranging from 0.745 to 0.930 for all the variables studied. In general, the chitosan concentration appeared to be the most significant (P< 0.1) factor influencing all variables except for TSS. The optimum concentration of chitosan and glycerol were predicted to be 2.02% and 0.18%, respectively. Statistical assessment showed insignificant difference between experimental and predicted values.
  2. Anarjan N, Jafarizadeh-Malmiri H, Nehdi IA, Sbihi HM, Al-Resayes SI, Tan CP
    Int J Nanomedicine, 2015;10:1109-18.
    PMID: 25709435 DOI: 10.2147/IJN.S72835
    Nanodispersion systems allow incorporation of lipophilic bioactives, such as astaxanthin (a fat soluble carotenoid) into aqueous systems, which can improve their solubility, bioavailability, and stability, and widen their uses in water-based pharmaceutical and food products. In this study, response surface methodology was used to investigate the influences of homogenization time (0.5-20 minutes) and speed (1,000-9,000 rpm) in the formation of astaxanthin nanodispersions via the solvent-diffusion process. The product was characterized for particle size and astaxanthin concentration using laser diffraction particle size analysis and high performance liquid chromatography, respectively. Relatively high determination coefficients (ranging from 0.896 to 0.969) were obtained for all suggested polynomial regression models. The overall optimal homogenization conditions were determined by multiple response optimization analysis to be 6,000 rpm for 7 minutes. In vitro cellular uptake of astaxanthin from the suggested individual and multiple optimized astaxanthin nanodispersions was also evaluated. The cellular uptake of astaxanthin was found to be considerably increased (by more than five times) as it became incorporated into optimum nanodispersion systems. The lack of a significant difference between predicted and experimental values confirms the suitability of the regression equations connecting the response variables studied to the independent parameters.
  3. Najjar-Tabrizi R, Javadi A, Sharifan A, Chew KW, Lay CH, Show PL, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00507.
    PMID: 32775231 DOI: 10.1016/j.btre.2020.e00507
    Saponin was extracted from Acanthophyllum glandulosum root under subcritical water conditions, and effects of root powder and pH of the solution were evaluated on the concentration of the saponin as manifested in its foamability and antioxidant activity using RSM. FT-IR analysis indicated that A. glandulosum root extract had 2 main functional groups (hydroxyl and amide I groups). Saponin with the highest foam height (4.66 cm), concentration (0.080 ppm) and antioxidant activity (90.6 %) was extracted using 10 g of the root powder and pH value of 4. Non-significant differences were observed between the predicted and experimental values of the extraction response variables. The study demonstrated good appropriateness of resulted models by Response Surface Methodology. Furthermore, higher values of R2 was attained for the foamability (>0.81) and antioxidant activity (>0.97), as well as large p-values (p > 0.05) indication of their lack-of-fit response verified the acceptable fitness of the provided models. The extracted saponin also showed bactericidal effect, which shows potential as a natural antibacterial compound.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links