Aim: To produce an accurate model of BCVA changes of postpterygium surgery according to its morphological characteristics by using the machine learning technique. Methodology. A retrospective of the secondary dataset of 93 samples of pterygium patients with different pterygium attributes was used and imported into four different machine learning algorithms in RapidMiner software to predict the improvement of BCVA after pterygium surgery.
Results: The performance of four machine learning techniques were evaluated, and it showed the support vector machine (SVM) model had the highest average accuracy (94.44% ± 5.86%), specificity (100%), and sensitivity (92.14% ± 8.33%).
Conclusion: Machine learning algorithms can produce a highly accurate postsurgery classification model of BCVA changes using pterygium characteristics.