Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Colorectal cancer (CRC) is one of the most deaths causing diseases worldwide. Several risk factors including hormones like insulin and insulin like growth factors (e.g., IGF-1) have been considered responsible for growth and progression of colon cancer. Though there is a huge advancement in the available screening as well as treatment techniques for CRC. There is no significant decrease in the mortality of cancer patients. Moreover, the current treatment approaches for CRC are associated with serious challenges like drug resistance and cancer re-growth. Given the severity of the disease, there is an urgent need for novel therapeutic agents with ideal characteristics. Several pieces of evidence suggested that natural products, specifically medicinal plants, and derived phytochemicals may serve as potential sources for novel drug discovery for various diseases including cancer. On the other hand, cancer cells like colon cancer require a high basal level of reactive oxygen species (ROS) to maintain its own cellular functions. However, excess production of intracellular ROS leads to cancer cell death via disturbing cellular redox homeostasis. Therefore, medicinal plants and derived phytocompounds that can enhance the intracellular ROS and induce apoptotic cell death in cancer cells via modulating various molecular targets including IGF-1 could be potential therapeutic agents. Alkaloids form a major class of such phytoconstituents that can play a key role in cancer prevention. Moreover, several preclinical and clinical studies have also evidenced that these compounds show potent anti-colon cancer effects and exhibit negligible toxicity towards the normal cells. Hence, the present evidence-based study aimed to provide an update on various alkaloids that have been reported to induce ROS-mediated apoptosis in colon cancer cells via targeting various cellular components including hormones and growth factors, which play a role in metastasis, angiogenesis, proliferation, and invasion. This study also provides an individual account on each such alkaloid that underwent clinical trials either alone or in combination with other clinical drugs. In addition, various classes of phytochemicals that induce ROS-mediated cell death in different kinds of cancers including colon cancer are discussed.