COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski's rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro-Macrolactin A complex indicated higher binding free energy (-42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.
Peacock bass (Cichla spp.) originates from the Neotropical environments of Brazil and Venezuela but, through trade and smuggling for aquarium keeping, sport fishing and aquaculture, it is now an emerging concern. Yet, less is known for Cichla spp. distribution and its ability to invade new environments. Aimed to communicate on Cichla spp. ecology, biology and introduction schemes from Scopus, Web of Science, Google Scholar and also National Centre for Biotechnology Information, this review also contains management strategies for invading fish species. While Cichla spp. can displace native fish populations, this concern is explained using ecological functions, physiological demands, direct and secondary invasion, disease tolerance and parasite spillover. Briefly, Cichla spp. has rapid embryogenesis (72 h) and matures in short periods (11-12 months), giving it an advantage to colonize new environments. With a large appetite, this true piscivore gains territorial control over water bodies by making it their feeding and nursery grounds. Perceived as an emerging concern after becoming introduced, seal-off or sport fishing were used to manage Cichla spp. but, this practice is not sustainable for the entire ecosystem. Hence, we recommend bottom-up management that involves community participation because they interact with the fish and have knowledge about their environment.