A growing number of fast-food outlets in close proximity to residential areas raises a question as to its impact on childhood overweight and obesity. This study aimed at determining the relationship between the availability of fast-food outlets that were in close proximity to residential areas and overweight among Malaysian children aged 5 to 18 years. Measurement data on the weight and height of 5544 children (2797 boys, 2747 girls) were obtained from the National Health and Morbidity Survey 2011. Overweight (including obesity) is defined as BMI-for-age z-score > +1 SD based on the WHO growth reference. Geographic information system geospatial analysis was performed to determine the number of fast-food outlets within 1000 m radius from the children's residential address. Multiple logistic regression was conducted to examine the association between the availability of fast-food outlets (none or more than one outlet) and overweight with adjustment for age, sex, ethnicity, monthly household income, parental educational level, residential area and supermarket density. Our results showed that the prevalence of overweight was 25.0% and there was a statistically significant association between the density of fast-food outlets and overweight (odds ratio: 1.23, 95% confidence interval: 1.03, 1.47). Our study suggested that the availability of fast-food outlets with close proximity in residential areas was significantly associated with being overweight among children. Limiting the number of fast-food outlets in residential areas could have a significant effect in reducing the prevalence of overweight among Malaysian children.
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.