Displaying all 3 publications

Abstract:
Sort:
  1. Karim FK, Jalab HA, Ibrahim RW, Al-Shamasneh AR
    J King Saud Univ Sci, 2022 Oct;34(7):102254.
    PMID: 35957965 DOI: 10.1016/j.jksus.2022.102254
    The medical image enhancement is major class in the image processing which aims for improving the medical diagnosis results. The improving of the quality of the captured medical images is considered as a challenging task in medical image. In this study, a trace operator in fractional calculus linked with the derivative of fractional Rényi entropy is proposed to enhance the low contrast COVID-19 images. The pixel probability values of the input image are obtained first in the proposed image enhancement model. Then the covariance matrix between the input image and the probability of a pixel intensity of the input image to be calculated. Finally, the image enhancement is performed by using the convolution of covariance matrix result with the input image. The proposed enhanced image algorithm is tested against three medical image datasets with different qualities. The experimental results show that the proposed medical image enhancement algorithm achieves the good image quality assessments using both the BRISQUE, and PIQE quality measures. Moreover, the experimental results indicated that the final enhancement of medical images using the proposed algorithm has outperformed other methods. Overall, the proposed algorithm has significantly improved the image which can be useful for medical diagnosis process.
  2. Ibrahim RW, Jalab HA, Karim FK, Alabdulkreem E, Ayub MN
    Quant Imaging Med Surg, 2022 Jan;12(1):172-183.
    PMID: 34993069 DOI: 10.21037/qims-21-15
    Background: The interest in using fractional calculus operators has grown in the field of image processing. Image enhancement is one of image processing tools that aims to improve the details of an image. The enhancement of medical images is a challenging task due to the unforeseeable variation in the quality of the captured images.

    Methods: In this study, we present a mathematical model based on the class of fractional partial differential equations (FPDEs). The class is formulated by the proportional-Caputo hybrid operator (PCHO). Moreover, some properties of the geometric functions in the unit disk are applied to determine the upper bound solutions for this class of FPDEs. The upper bound solution is indicated in the relations of the general hypergeometric functions. The main advantage of FPDE lies in its capability to enhance the low contrast intensities through the proposed fractional enhanced operator.

    Results: The proposed image enhancement algorithm is tested against brain and lungs computed tomography (CT) scans datasets of different qualities to show that it is robust and can withstand dramatic variations in quality. The quantitative results of Brisque, Piqe, SSEQ, and SAMGVG were 40.93%, 41.13%, 66.09%, and 31.04%, respectively for brain magnetic resonance imaging (MRI) images and 39.07, 41.33, 30.97, and 159.24 respectively for the CT lungs images. The comparative results show that the proposed image enhancement model achieves the best image quality assessments.

    Conclusions: Overall, this model significantly improves the details of the given datasets, and could potentially help the medical staff during the diagnosis process.

  3. Khafaga DS, Ibrahim A, El-Kenawy EM, Abdelhamid AA, Karim FK, Mirjalili S, et al.
    Diagnostics (Basel), 2022 Nov 21;12(11).
    PMID: 36428952 DOI: 10.3390/diagnostics12112892
    Human skin diseases have become increasingly prevalent in recent decades, with millions of individuals in developed countries experiencing monkeypox. Such conditions often carry less obvious but no less devastating risks, including increased vulnerability to monkeypox, cancer, and low self-esteem. Due to the low visual resolution of monkeypox disease images, medical specialists with high-level tools are typically required for a proper diagnosis. The manual diagnosis of monkeypox disease is subjective, time-consuming, and labor-intensive. Therefore, it is necessary to create a computer-aided approach for the automated diagnosis of monkeypox disease. Most research articles on monkeypox disease relied on convolutional neural networks (CNNs) and using classical loss functions, allowing them to pick up discriminative elements in monkeypox images. To enhance this, a novel framework using Al-Biruni Earth radius (BER) optimization-based stochastic fractal search (BERSFS) is proposed to fine-tune the deep CNN layers for classifying monkeypox disease from images. As a first step in the proposed approach, we use deep CNN-based models to learn the embedding of input images in Euclidean space. In the second step, we use an optimized classification model based on the triplet loss function to calculate the distance between pairs of images in Euclidean space and learn features that may be used to distinguish between different cases, including monkeypox cases. The proposed approach uses images of human skin diseases obtained from an African hospital. The experimental results of the study demonstrate the proposed framework's efficacy, as it outperforms numerous examples of prior research on skin disease problems. On the other hand, statistical experiments with Wilcoxon and analysis of variance (ANOVA) tests are conducted to evaluate the proposed approach in terms of effectiveness and stability. The recorded results confirm the superiority of the proposed method when compared with other optimization algorithms and machine learning models.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links