Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Sabarudin A, Subramaniam C, Sun Z
    Quant Imaging Med Surg, 2014 Aug;4(4):282-90.
    PMID: 25202664 DOI: 10.3978/j.issn.2223-4292.2014.07.10
    The purpose of this study was to analyse the diagnostic value of cerebral CT angiography (CTA) and CT perfusion (CTP) examinations in the detection of acute stroke based on a systematic review of the current literature. The review was conducted based on searching of seven databases for articles published between 1993 and 2013. Diagnostic value in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy was analysed from 21 articles which were found to meet selection criteria. The mean sensitivity, specificity, PPV, NPV and accuracy for CTA were significantly higher than those for CTP with 83.2% (95% CI: 57.9-100.0%), 95.0% (95% CI: 74.4-100%), 84.1% (95% CI: 50.0-100%), 97.1 (95% CI: 94.0-100%) and 94.0% (95% CI: 83.0-99.0) versus 69.9% (95% CI: 20.0-97.0%), 87.4 (95% CI: 61.0-100.0%), 76.4% (95% CI: 48.0-95.4%), 78.2% (95% CI: 55.8-93.9%) and 89.8% (95% CI: 75.7-97.1%), respectively. This analysis shows that CTA has high diagnostic value in detecting high degree of cerebral arterial stenosis (>70%) whereas CTP provides high specificity in the detection of ischemia and infarct tissue of brain.
  2. Ahmad Zaiki FW, Md Dom S, Abdul Razak HR, Hassan HF
    Quant Imaging Med Surg, 2013 Oct;3(5):262-8.
    PMID: 24273744 DOI: 10.3978/j.issn.2223-4292.2013.10.05
    Prenatal Ultrasound (US) is commonly used as a routine procedure on pregnant women. It is generally perceived as a safe procedure due to the use of non-ionizing radiation. However, the neurotoxicity of diagnostic prenatal US was detected to have a correlation with high susceptibility to early developing fetus. This research involved in vivo experimental model by using 3(rd) trimester pregnant Oryctolagus cuniculus and exposing them to US exposures for 30, 60, and 90 minutes at their gestational day (GD) 28-29. The output power and intensities, spatial peak temporal average intensity (ISPTA) of US were varied from 0.4 to 0.7 W and 0.13 to 0.19 W/cm(2) respectively were tested initially in free-field, water. Haematological analysis was carried out to detect any changes in blood constituents. Statistically significant differences were detected in red blood cell (RBC) count (P<0.001), haemoglobin (Hb) concentration (P<0.001) and also platelet (PLT) count (P<0.001) in newborn of Oryctolagus cuniculus. These findings indicate the possibility of US heating in causing defects on studied animal.
  3. Abdul Razak HR, Shaffiq Said Rahmat SM, Md Saad WM
    Quant Imaging Med Surg, 2013 Oct;3(5):256-61.
    PMID: 24273743 DOI: 10.3978/j.issn.2223-4292.2013.10.04
    The study aimed to investigate the effects of different tube potentials and concentrations of iodinated contrast media (CM) on the image enhancement, contrast-to-noise ratio (CNR) and noise in micro-computed tomography (µCT) images. A phantom containing of five polyethylene tube was filled with 2 mL of deionized water and iodinated CM (Omnipaque 300 mgI/mL) at four different concentrations: 5, 10, 15, and 20 mol/L, respectively. The phantom was scanned with a µCT machine (SkyScan 1176) using various tube potentials: 40, 50, 60, 70, 80, and 90 kVp, a fixed tube current; 100 µA, and filtration of 0.2 mm aluminum (Al). The percentage difference of image enhancement, CNR and noise of all images, acquired at different kVps and concentrations, were calculated. The image enhancement, CNR and noise curves with respect to tube potential and concentration were plotted and analysed. The highest image enhancement was found at the lowest tube potential of 40 kVp. At this kVp setting, the percentage difference of image enhancement [Hounsfield Unit (HU) of 20 mol/L iodine concentration over HU of deionized water] was 43%. By increasing the tube potential, it resulted with the reduction of HU, where only 17.5% different were noticed for 90 kVp. Across all iodine concentrations (5-20 M), CNR peaked at 80 kVp and then these values showed a slight decreasing pattern, which might be due insufficient tube current compensation. The percentage difference of image noise obtained at 40 and 90 kVp was 72.4%. Lower tube potential setting results in higher image enhancement (HU) in conjunction with increasing concentration of iodinated CM. Overall, the tube potential increment will substantially improve CNR and reduce image noise.
  4. Mahmud MH, Nordin AJ, Ahmad Saad FF, Azman AZ
    Quant Imaging Med Surg, 2015 Oct;5(5):700-7.
    PMID: 26682140 DOI: 10.3978/j.issn.2223-4292.2015.05.02
    Increased metabolic activity of fluorodeoxyglucose (FDG) in tissue is not only resulting of pathological uptake, but due to physiological uptake as well. This study aimed to determine the impacts of biological and procedural factors on FDG uptake of liver in whole body positron emission tomography/computed tomography (PET/CT) imaging.
  5. Gill MK, Vijayananthan A, Kumar G, Jayarani K, Ng KH, Sun Z
    Quant Imaging Med Surg, 2015 Aug;5(4):524-33.
    PMID: 26435916 DOI: 10.3978/j.issn.2223-4292.2015.04.04
    To determine the effective radiation dose and image quality resulting from 100 versus 120 kilovoltage (kV) protocols among patients referred for computed tomography pulmonary angiography (CTPA).
  6. Wáng YX, Arora R, Choi Y, Chung HW, Egorov VI, Frahm J, et al.
    Quant Imaging Med Surg, 2014 Dec;4(6):453-61.
    PMID: 25525577 DOI: 10.3978/j.issn.2223-4292.2014.11.16
    Journal based metrics is known not to be ideal for the measurement of the quality of individual researcher's scientific output. In the current report 16 contributors from Hong Kong SAR, India, Korea, Taiwan, Russia, Germany, Japan, Turkey, Belgium, France, Italy, UK, The Netherlands, Malaysia, and USA are invited. The following six questions were asked: (I) is Web of Sciences journal impact factor (IF) and Institute for Scientific Information (ISI) citation the main academic output performance evaluation tool in your institution? and your country? (II) How does Google citation count in your institution? and your country? (III) If paper is published in a non-SCI journal but it is included in PubMed and searchable by Google scholar, how it is valued when compared with a paper published in a journal with an IF? (IV) Do you value to publish a piece of your work in a non-SCI journal as much as a paper published in a journal with an IF? (V) What is your personal view on the metric measurement of scientific output? (VI) Overall, do you think Web of Sciences journal IF is beneficial, or actually it is doing more harm? The results show that IF and ISI citation is heavily affecting the academic life in most of the institutions. Google citation and evaluation, while is being used and convenient and speedy, has not gain wide 'official' recognition as a tool for scientific output evaluation.
  7. Nazri M, Bux SI, Tengku-Kamalden TF, Ng KH, Sun Z
    Quant Imaging Med Surg, 2013 Apr;3(2):82-8.
    PMID: 23630655 DOI: 10.3978/j.issn.2223-4292.2013.03.06
    To investigate the prevalence of incidental sinus abnormalities on CT and MRI imaging of the head, and identify if there is any correlation between patient symptomatology and image findings.
  8. Sabarudin A, Tiau YJ
    Quant Imaging Med Surg, 2013 Feb;3(1):43-8.
    PMID: 23483085 DOI: 10.3978/j.issn.2223-4292.2013.02.07
    This study is designed to compare and evaluate the diagnostic image quality of dental panoramic radiography between conventional and digital systems. Fifty-four panoramic images were collected and divided into three groups consisting of conventional, digital with and without post processing image. Each image was printed out and scored subjectively by two experienced dentists who were blinded to the exposure parameters and system protocols. The evaluation covers of anatomical coverage and structures, density and image contrast. The overall image quality score revealed that digital panoramic with post-processing scored the highest of 3.45±0.19, followed by digital panoramic system without post-processing and conventional panoramic system with corresponding scores of 3.33±0.33 and 2.06±0.40. In conclusion, images produced by digital panoramic system are better in diagnostic image quality than that from conventional panoramic system. Digital post-processing visualization can improve diagnostic quality significantly in terms of radiographic density and contrast.
  9. Md Dom S, Abdul Razak HR, Ahmad Zaiki FW, Saat NH, Abd Manan K, Che Isa IN, et al.
    Quant Imaging Med Surg, 2013 Feb;3(1):49-53.
    PMID: 23483040 DOI: 10.3978/j.issn.2223-4292.2013.02.06
    The aim of this study was to investigate the changes in parathyroid hormone (PTH) level of rabbit foetal bodies exposed to ultrasound at different gestational stages. A total of 9 pregnant rabbits (Oryctolagus cuniculus) were insonated for 60 minutes at the middle of 1(st), 2(nd) and 3(rd) gestational stages for group A (n=14 newborns), group B (n=7 newborns) and group C (n=24 newborns) respectively. Seven pregnant rabbits with 41 newborns severed as negative control group. Blood samples were withdrawn from each newborn rabbits for Parathyroid Hormone-Intact (PTH-I) test. Results of the independent samples t-test implied statistically significant differences (P<0.05) between the control group and the 1(st) stage (P=0.001), the 2(nd) stage (P<0.001) and the 3(rd) stage group (P<0.001). This in-vivo study revealed diagnostic ultrasound heating has the potential of affecting foetal PTH level. This study observed significantly low PTH level for all the treated groups. A further study should be instituted to determine whether this finding in rabbit may also occur in human by means of clinical trials.
  10. Chian TC, Nassir NM, Ibrahim MI, Yusof AK, Sabarudin A
    Quant Imaging Med Surg, 2017 Feb;7(1):48-58.
    PMID: 28275559 DOI: 10.21037/qims.2017.02.02
    BACKGROUND: This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols.

    METHODS: Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software.

    RESULTS: Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp.

    CONCLUSIONS: There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient.

  11. Mustapha FA, Bashah FAA, Yassin IM, Fathinul Fikri AS, Nordin AJ, Abdul Razak HR
    Quant Imaging Med Surg, 2017 Jun;7(3):310-317.
    PMID: 28811997 DOI: 10.21037/qims.2017.05.03
    BACKGROUND: Kidneys and urinary bladder are common physiologic uptake sites of 18fluorine-fluorodeoxyglucose ((18)F-FDG) causing increased exposure of low energy ionizing radiation to these organs. Accurate measurement of organ dose is vital as (18)F-FDG is directly exposed to the organs. Organ dose from (18)F-FDG PET is calculated according to the injected (18)F-FDG activity with the application of dose coefficients established by International Commission on Radiological Protection (ICRP). But this dose calculation technique is not directly measured from these organs; rather it is calculated based on total injected activity of radiotracer prior to scanning. This study estimated the (18)F-FDG dose to the kidneys and urinary bladder in whole body positron emission tomography/computed tomography (PET/CT) examination by comparing dose from total injected activity of (18)F-FDG (calculated dose) and dose from organs activity based on the region of interest (ROI) (measured dose).

    METHODS: Nine subjects were injected intravenously with the mean (18)F-FDG dose of 292.42 MBq prior to whole body PET/CT scanning. Kidneys and urinary bladder doses were estimated by using two approaches which are the total injected activity of (18)F-FDG and organs activity concentration of (18)F-FDG based on drawn ROI with the application of recommended dose coefficients for (18)F-FDG described in the ICRP 80 and ICRP 106.

    RESULTS: The mean percentage difference between calculated dose and measured dose ranged from 98.95% to 99.29% for the kidneys based on ICRP 80 and 98.96% to 99.32% based on ICRP 106. Whilst, the mean percentage difference between calculated dose and measured dose was 97.08% and 97.27% for urinary bladder based on ICRP 80 while 96.99% and 97.28% based on ICRP 106. Whereas, the range of mean percentage difference between calculated and measured organ doses derived from ICRP 106 and ICRP 80 for kidney doses were from 17.00% to 40.00% and for urinary bladder dose was 18.46% to 18.75%.

    CONCLUSIONS: There is a significant difference between calculated dose and measured dose. The use of organ activity estimation based on drawn ROI and the latest version of ICRP 106 dose coefficient should be explored deeper to obtain accurate radiation dose to patients.

  12. Lau I, Wong YH, Yeong CH, Abdul Aziz YF, Md Sari NA, Hashim SA, et al.
    Quant Imaging Med Surg, 2019 Jan;9(1):107-114.
    PMID: 30788252 DOI: 10.21037/qims.2019.01.02
    Current visualization techniques of complex congenital heart disease (CHD) are unable to provide comprehensive visualization of the anomalous cardiac anatomy as the medical datasets can essentially only be viewed from a flat, two-dimensional (2D) screen. Three-dimensional (3D) printing has therefore been used to replicate patient-specific hearts in 3D views based on medical imaging datasets. This technique has been shown to have a positive impact on the preoperative planning of corrective surgery, patient-doctor communication, and the learning experience of medical students. However, 3D printing is often costly, and this impedes the routine application of this technology in clinical practice. This technical note aims to investigate whether reducing 3D printing costs can have any impact on the clinical value of the 3D-printed heart models. Low-cost and a high-cost 3D-printed models based on a selected case of CHD were generated with materials of differing cost. Quantitative assessment of dimensional accuracy of the cardiac anatomy and pathology was compared between the 3D-printed models and the original cardiac computed tomography (CT) images with excellent correlation (r=0.99). Qualitative evaluation of model usefulness showed no difference between the two models in medical applications.
  13. Tan SK, Ng KH, Yeong CH, Raja Aman RRA, Mohamed Sani F, Abdul Aziz YF, et al.
    Quant Imaging Med Surg, 2019 Apr;9(4):552-564.
    PMID: 31143647 DOI: 10.21037/qims.2019.03.13
    Background: High delivery rate is an important factor in optimizing contrast medium administration in coronary computed tomography angiography (CCTA). A personalized contrast volume calculation algorithm incorporating high iodine delivery rate (IDR) can reduce total iodine dose (TID) and produce optimal vessel contrast enhancement (VCE) in low tube voltage CCTA. In this study, we developed and validated an algorithm for calculating the volume of contrast medium delivered at a high rate for patients undergoing retrospectively ECG-gated CCTA with low tube voltage protocol.

    Methods: The algorithm for an IDR of 2.22 gI·s-1 was developed based on the relationship between VCE and contrast volume in 141 patients; test bolus parameters and characteristics in 75 patients; and, tube voltage in a phantom study. The algorithm was retrospectively tested in 45 patients who underwent retrospectively ECG-gated CCTA with a 100 kVp protocol. Image quality, TID and radiation dose exposure were compared with those produced using the 120 kVp and routine contrast protocols.

    Results: Age, sex, body surface area (BSA) and peak contrast enhancement (PCE) were significant predictors for VCE (P<0.05). A strong linear correlation was observed between VCE and contrast volume (r=0.97, P<0.05). The 100-to-120 kVp contrast enhancement conversion factor (Ec) was calculated at 0.81. Optimal VCE (250 to 450 HU) and diagnostic image quality were obtained with significant reductions in TID (32.1%) and radiation dose (38.5%) when using 100 kVp and personalized contrast volume calculation algorithm compared with 120 kVp and routine contrast protocols (P<0.05).

    Conclusions: The proposed algorithm could significantly reduce TID and radiation exposure while maintaining optimal VCE and image quality in CCTA with 100 kVp protocol.

  14. Sindi R, Wong YH, Yeong CH, Sun Z
    Quant Imaging Med Surg, 2020 Jun;10(6):1237-1248.
    PMID: 32550133 DOI: 10.21037/qims-20-251
    Background: Despite increasing reports of 3D printing in medical applications, the use of 3D printing in breast imaging is limited, thus, personalized 3D-printed breast model could be a novel approach to overcome current limitations in utilizing breast magnetic resonance imaging (MRI) for quantitative assessment of breast density. The aim of this study is to develop a patient-specific 3D-printed breast phantom and to identify the most appropriate materials for simulating the MR imaging characteristics of fibroglandular and adipose tissues.

    Methods: A patient-specific 3D-printed breast model was generated using 3D-printing techniques for the construction of the hollow skin and fibroglandular region shells. Then, the T1 relaxation times of the five selected materials (agarose gel, silicone rubber with/without fish oil, silicone oil, and peanut oil) were measured on a 3T MRI system to determine the appropriate ones to represent the MR imaging characteristics of fibroglandular and adipose tissues. Results were then compared to the reference values of T1 relaxation times of the corresponding tissues: 1,324.42±167.63 and 449.27±26.09 ms, respectively. Finally, the materials that matched the T1 relaxation times of the respective tissues were used to fill the 3D-printed hollow breast shells.

    Results: The silicone and peanut oils were found to closely resemble the T1 relaxation times and imaging characteristics of these two tissues, which are 1,515.8±105.5 and 405.4±15.1 ms, respectively. The agarose gel with different concentrations, ranging from 0.5 to 2.5 wt%, was found to have the longest T1 relaxation times.

    Conclusions: A patient-specific 3D-printed breast phantom was successfully designed and constructed using silicone and peanut oils to simulate the MR imaging characteristics of fibroglandular and adipose tissues. The phantom can be used to investigate different MR breast imaging protocols for the quantitative assessment of breast density.

  15. Wan Ab Naim WN, Sun Z, Liew YM, Chan BT, Jansen S, Lei J, et al.
    Quant Imaging Med Surg, 2021 May;11(5):1723-1736.
    PMID: 33936960 DOI: 10.21037/qims-20-814
    Background: The study aims to analyze the correlation between the maximal diameter (both axial and orthogonal) and volume changes in the true (TL) and false lumens (FL) after stent-grafting for Stanford type B aortic dissection.

    Method: Computed tomography angiography was performed on 13 type B aortic dissection patients before and after procedure, and at 6 and 12 months follow-up. The lumens were divided into three regions: the stented area (Region 1), distal to the stent graft to the celiac artery (Region 2), and between the celiac artery and the iliac bifurcation (Region 3). Changes in aortic morphology were quantified by the increase or decrease of diametric and volumetric percentages from baseline measurements.

    Results: At Region 1, the TL diameter and volume increased (pre-treatment: volume =51.4±41.9 mL, maximal axial diameter =22.4±6.8 mm, maximal orthogonal diameter =21.6±7.2 mm; follow-up: volume =130.7±69.2 mL, maximal axial diameter =40.1±8.1 mm, maximal orthogonal diameter =31.9+2.6 mm, P<0.05 for all comparisons), while FL decreased (pre-treatment: volume =129.6±150.5 mL; maximal axial diameter =43.0±15.8 mm; maximal orthogonal diameter =28.3±12.6 mm; follow-up: volume =66.6±95.0 mL, maximal axial diameter =24.5±19.9 mm, maximal orthogonal diameter =16.9±13.7, P<0.05 for all comparisons). Due to the uniformity in size throughout the vessel, high concordance was observed between diametric and volumetric measurements in the stented region with 93% and 92% between maximal axial diameter and volume for the true/false lumens, and 90% and 92% between maximal orthogonal diameter and volume for the true/false lumens. Large discrepancies were observed between the different measurement methods at regions distal to the stent graft, with up to 46% differences between maximal orthogonal diameter and volume.

    Conclusions: Volume measurement was shown to be a much more sensitive indicator in identifying lumen expansion/shrinkage at the distal stented region.

  16. Foo LS, Harston G, Mehndiratta A, Yap WS, Hum YC, Lai KW, et al.
    Quant Imaging Med Surg, 2021 Aug;11(8):3797-3811.
    PMID: 34341751 DOI: 10.21037/qims-20-1339
    Amide proton transfer (APT) magnetic resonance imaging (MRI) is a pH-sensitive imaging technique that can potentially complement existing clinical imaging protocol for the assessment of ischemic stroke. This review aims to summarize the developments in the clinical research of APT imaging of ischemic stroke after 17 years of progress since its first preclinical study in 2003. Three electronic databases: PubMed, Scopus, and Cochrane Library were systematically searched for articles reporting clinical studies on APT imaging of ischemic stroke. Only articles in English published between 2003 to 2020 that involved patients presenting ischemic stroke-like symptoms that underwent APT MRI were included. Of 1,093 articles screened, 14 articles met the inclusion criteria with a total of 282 patients that had been scanned using APT imaging. Generally, the clinical studies agreed APT effect to be hypointense in ischemic tissue compared to healthy tissue, allowing for the detection of ischemic stroke. Other uses of APT imaging have also been investigated in the studies, including penumbra identification, predicting long term clinical outcome, and serving as a biomarker for supportive treatment monitoring. The published results demonstrated the potential of APT imaging in these applications, but further investigations and larger trials are needed for conclusive evidence. Future studies are recommended to report the result of asymmetry analysis at 3.5 ppm along with the findings of the study to reduce this contribution to the heterogeneity of experimental methods observed and to facilitate effective comparison of results between studies and centers. In addition, it is important to focus on the development of fast 3D imaging for full volumetric ischemic tissue assessment for clinical translation.
  17. Ibrahim RW, Jalab HA, Karim FK, Alabdulkreem E, Ayub MN
    Quant Imaging Med Surg, 2022 Jan;12(1):172-183.
    PMID: 34993069 DOI: 10.21037/qims-21-15
    Background: The interest in using fractional calculus operators has grown in the field of image processing. Image enhancement is one of image processing tools that aims to improve the details of an image. The enhancement of medical images is a challenging task due to the unforeseeable variation in the quality of the captured images.

    Methods: In this study, we present a mathematical model based on the class of fractional partial differential equations (FPDEs). The class is formulated by the proportional-Caputo hybrid operator (PCHO). Moreover, some properties of the geometric functions in the unit disk are applied to determine the upper bound solutions for this class of FPDEs. The upper bound solution is indicated in the relations of the general hypergeometric functions. The main advantage of FPDE lies in its capability to enhance the low contrast intensities through the proposed fractional enhanced operator.

    Results: The proposed image enhancement algorithm is tested against brain and lungs computed tomography (CT) scans datasets of different qualities to show that it is robust and can withstand dramatic variations in quality. The quantitative results of Brisque, Piqe, SSEQ, and SAMGVG were 40.93%, 41.13%, 66.09%, and 31.04%, respectively for brain magnetic resonance imaging (MRI) images and 39.07, 41.33, 30.97, and 159.24 respectively for the CT lungs images. The comparative results show that the proposed image enhancement model achieves the best image quality assessments.

    Conclusions: Overall, this model significantly improves the details of the given datasets, and could potentially help the medical staff during the diagnosis process.

  18. Allan A, Kealley C, Squelch A, Wong YH, Yeong CH, Sun Z
    Quant Imaging Med Surg, 2019 Jan;9(1):86-93.
    PMID: 30788249 DOI: 10.21037/qims.2018.12.01
    BACKGROUND: 3D printing has shown great promise in medical applications, with increasing reports in liver diseases. However, research on 3D printing in biliary disease is limited with lack of studies on validation of model accuracy. In this study, we presented our experience of creating a realistic 3D printed model of biliary ducts with congenital cyst. Measurements of anatomical landmarks were compared at different stages of model generation to determine dimensional accuracy.

    METHODS: Contrast-enhanced computed tomography (CT) images of a patient diagnosed with congenital cyst in the common bile duct with dilated hepatic ducts were used to create the 3D printed model. The 3D printed model was scanned on a 64-slice CT scanner using the similar abdominal CT protocol. Measurements of anatomical structures including common hepatic duct (CHD), right hepatic duct (RHD), left hepatic duct (LHD) and the cyst at left to right and anterior to posterior dimensions were performed and compared between original CT images, the standard tessellation language (STL) image and CT images of the 3D model.

    RESULTS: The 3D printing model was successfully generated with replication of biliary ducts and cyst. Significant differences in measurements of these landmarks were found between the STL and the original CT images, and the CT images of the 3D printed model and the original CT images (P<0.05). Measurements of the RHD and LHD diameters from the original CT images were significantly larger than those from the CT images of 3D model or STL file (P<0.05), while measurements of the CHD diameters were significantly smaller than those of the other two datasets (P<0.05). No significant differences were reached in measurements of the CHD, RHD, LHD and the biliary cyst between CT images of the 3D printed model and STL file (P=0.08-0.98).

    CONCLUSIONS: This study shows our experience in producing a realistic 3D printed model of biliary ducts and biliary cyst. The model was found to replicate anatomical structures and cyst with high accuracy between the STL file and the CT images of the 3D model. Large discrepancy in dimensional measurements was noted between the original CT and STL file images, and the original CT and CT images of the 3D model, highlighting the necessity of further research with inclusion of more cases of biliary disease to validate accuracy of 3D printed biliary models.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links