This study looked at the state-of-the-art present knowledge base and trends in the area of using rejuvenators in reclaimed asphalt pavement (RAP) by systemic analysis and visualisation using VOSviewer and Scopus analyser; a total of 1872 studies were mined from the Scopus database for the purpose of this study. This quantitative approach to the review of literature removes author bias. The study was able to identify keywords and their cluster groups making up of core research domains ((1) asphalt binder composition and properties, (2) reclaimed asphalt mixtures (recycling), (3) reclaimed asphalt performance characteristics, (4) reclaimed asphalt sustainability, (5) rejuvenating agents and their performance, and (6) area of application). The study was able to identify the top authors; their document counts and citations; the most influential journals, institutions, and countries leading the way in the research domain; and the link between these authors and keywords within the existing body of literature in the research area. This study will help policymakers in identifying the main research themes and possible area of investments for further research in RAP. This study will also be a valuable compendium to researchers who intend to broaden the scope of the research area.
Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.