The paper presents the most comprehensive and large-scale global study to date on how higher education students perceived the use of ChatGPT in early 2024. With a sample of 23,218 students from 109 countries and territories, the study reveals that students primarily used ChatGPT for brainstorming, summarizing texts, and finding research articles, with a few using it for professional and creative writing. They found it useful for simplifying complex information and summarizing content, but less reliable for providing information and supporting classroom learning, though some considered its information clearer than that from peers and teachers. Moreover, students agreed on the need for AI regulations at all levels due to concerns about ChatGPT promoting cheating, plagiarism, and social isolation. However, they believed ChatGPT could potentially enhance their access to knowledge and improve their learning experience, study efficiency, and chances of achieving good grades. While ChatGPT was perceived as effective in potentially improving AI literacy, digital communication, and content creation skills, it was less useful for interpersonal communication, decision-making, numeracy, native language proficiency, and the development of critical thinking skills. Students also felt that ChatGPT would boost demand for AI-related skills and facilitate remote work without significantly impacting unemployment. Emotionally, students mostly felt positive using ChatGPT, with curiosity and calmness being the most common emotions. Further examinations reveal variations in students' perceptions across different socio-demographic and geographic factors, with key factors influencing students' use of ChatGPT also being identified. Higher education institutions' managers and teachers may benefit from these findings while formulating the curricula and instructions/regulations for ChatGPT use, as well as when designing the teaching methods and assessment tools. Moreover, policymakers may also consider the findings when formulating strategies for secondary and higher education system development, especially in light of changing labor market needs and related digital skills development.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20 fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst) GeV, with a total uncertainty of 0.33 GeV.
The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.