Altered renal adrenergic responses have been recognized as pathophysiological responses to high salt intake. This study aims to investigate the influence of 6 weeks of high salt diet on α1A -adrenoceptor regulation of renal tubular antinatriuretic and antidiuretic response in normal Wistar Kyoto rats. To achieve the above objective, antinatriuretic and antidiuretic response to phenylephrine was measured in the absence and presence of 5-methylurapidil (5-MeU) using the inulin clearance method. Systemic mean arterial blood pressure and renal haemodynamics were also measured simultaneously. Six weeks of high salt intake in Wistar-Kyoto (WKY) rats did not bring any significant increase in mean arterial blood pressure. WKY rat on high salt diet (WKYHNa) showed an exaggerated increase in absolute and fractional sodium excretion. There was a significant involvement of α1A -adrenoceptor in carrying out renal tubular antinatriuretic and antidiuretic response in Wistar Kyoto rats on normal sodium diet (WKYNNa). However, α1A -adrenoceptor played a minimal role in handling the tubular reabsorptive response in WKY rats on high salt diet.
Squamous cell carcinoma involving the oral cavity (OC) and oropharynx regions are a major cause of morbidity and mortality world-wide. The recent discovery of a strong association between human papilloma virus (HPV) infection and OC and oropharyngeal (OP) cancer has prompted world-wide research into the exact etiology and pathogenesis of these cancers in relation to the HPV. HPV-positive OC/OP cancers generally present at a relatively advanced stage (by virtue of cervical nodal involvement) and are more commonly seen in younger patients without significant exposure to alcohol or tobacco. These factors are implicated in prognosis, regardless of HPV association. In this article, we review the biology and epidemiology, risk factors, association, molecular analyses, treatment response and prognosis of HPV-related cancers. Role of HPV vaccination in HPV-related OC/OP cancers has also been discussed.
1 Increased renal vascular resistance is one renal functional abnormality that contributes to hypertension, and alpha(1)-adrenoceptors play a pivotal role in modulating this renal vascular resistance. This study investigates the functional contribution of alpha(1)-adrenoceptor subtypes in the renal cortical vasculature of Wistar-Kyoto rats on a normal sodium diet (WKYNNa) compared with those given saline to drink for 6 weeks (WKYHNa). 2 The renal cortical vascular responses to the adrenergic agonists noradrenaline (NA), methoxamine (ME) and phenylephrine (PE) were measured in WKYHNa and WKYNNa rats either in the absence (the control phase) or presence of chloroethylclonidine (CEC), an alpha(1B)-adrenoceptor antagonist, 5-methylurapidil (5-MeU), an alpha(1A) antagonist, or BMY7378, an alpha(1D) antagonist. 3 Results showed a greater renal cortical vascular sensitivity to NA, PE and ME in the WKYHNa compared with WKYNNa rats (P < 0.05). Moreover, 5-MeU and BMY7378 attenuated adrenergically induced renal cortical vasoconstriction in WKYHNa and WKYNNa rats; this response was largely blunted in CEC-treated WKYHNa rats (all P < 0.05) but not in CEC-treated WKYNNa rats. 4 The data suggest that irrespective of dietary sodium content, in Wistar-Kyoto rats alpha(1A)- and alpha(1D)-subtypes are the major alpha(1)-adrenoceptors in renal cortical vasculature; however, there appears to be a functional involvement of alpha(1B)-adrenoceptors in the WKYHNa rats.