Six new sulfur-containing bis-iridoid glucosides, saprosmosides A-F (1-6), were isolated from the leaves of Saprosma scortechinii. From the stems of this same plant, two new iridoid glucosides, 3,4-dihydro-3-methoxypaederoside (8) and 10-O-benzoyldeacetylasperulosidic acid (12), were isolated. Their structures were elucidated by means of chemical, NMR, and mass spectroscopic methods. Additionally, 11 known iridoid glucosides were isolated and characterized as deacetylasperuloside, asperuloside, paederoside (7), deacetylasperulosidic acid (9), scandoside, asperulosidic acid, 10-acetylscandoside, paederosidic acid (10), 6-epi-paederosidic acid (11), methylpaederosidate, and monotropein. The structures of the new bis-iridoid glucosides were formed by intermolecular esterification between the glucose and carboxyl groups of three monomeric iridoid glucosides (7, 9, and 10).
A further investigation of the leaves and stems of Saprosma scortechinii afforded 13 compounds, of which 10 are new compounds. These were elucidated as the bis-iridoid glucosides, saprosmosides G (1) and H (2), the iridoid glucoside, 6-O-epi-acetylscandoside (3), and the anthraquinones, 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone (4), 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (5), 1,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (6), 1,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinone (7), 1-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (8), 1,3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-beta-primeveroside (9), and 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (10). Structure assignments for all compounds were established by means of mass and NMR spectroscopies, chemical methods, and comparison with published data. The new anthraquinones were derivatives of munjistin and lucidin.