Pseuduvarines A (1) and B (2), two new dioxoaporphine alkaloids with an amino moiety, were isolated from the stem bark of Pseuduvaria rugosa and their structures were elucidated by combination of 2D-NMR spectroscopic analysis. Pseuduvarines A (1) and B (2) showed cytotoxicity against MCF7, HepG2, and HL-60 (1: IC₅₀, 0.9, 21.7, and >50.0 µM, respectively, 2: IC₅₀ >50.0, 15.7, and 12.4 µM, respectively).
Two new indole alkaloids, neolamarckines A and B (1, 2) were isolated from the leaves of Neolamarckia cadamba (Rubiaceae). Structural elucidation of 1 and 2 was performed by combination of 2D-NMR and circular dichroism (CD) spectra, and chemical correlations. Neolamarckine A (1) showed inhibition of inducible nitric oxide synthase (iNOS) dose dependently.
A phytochemical study on the bark of Neisosperma oppositifolia (Apocynaceae) yielded two new beta-carboline indole alkaloids, oppositinines A (1) and B (2), together with five known alkaloids, isoreserpiline, isocarapanaubine, vobasine, 10-methoxydihydrocorynantheol-N-oxide, and ochropposinine oxindole. Structural elucidation of 1 and 2 was performed using 2D NMR methods. Oppositinines A (1) and B (2) showed potent vasorelaxant effects on the rat aorta.
Gellan gum based floating beads containing clarithromycin (FBC) were prepared by iontotropic gelation method for stomach-specific drug delivery against Helicobacter pylori. The scanning electron microscope photograph indicated that prepared beads were spherical in shape with rough outer surface. Formulation variables such as concentrations of gellan, calcium carbonate and drug loading influenced the in vitro drug release characteristics of prepared beads. In vitro release rate of clarithromycin was corrected using first order degradation rate constant which is degraded significantly during the release study in simulated gastric fluid pH 2.0. Further, the absence of interactions between drug and polymer was confirmed by differential scanning calorimetry analysis. Kinetic treatment of the in vitro drug release data with different kinetic equations revealed matrix diffusion mechanism. Prepared beads showed good anti-microbial activity against isolated H. pylori strain. The prepared beads have shown good in vivo floating efficiency in rabbit stomach. The stability studies of beads did not show any significant changes after storage of beads at 40 degrees C/75% relative humidity for 6 months. The preliminary results from this study suggest that floating beads of gellan can be used to incorporate antibiotics like clarithromycin and may be effective when administered locally in the stomach against H. pylori.
The leaves of a tropical plant, Mitragyna speciosa KORTH (Rubiaceae), have been traditionally used as a substitute for opium. Phytochemical studies of the constituents of the plant growing in Thailand and Malaysia have led to the isolation of several 9-methoxy-Corynanthe-type monoterpenoid indole alkaloids, including new natural products. The structures of the new compounds were elucidated by spectroscopic and/or synthetic methods. The potent opioid agonistic activities of mitragynine, the major constituent of this plant, and its analogues were found in in vitro and in vivo experiments and the mechanisms underlying the analgesic activity were clarified. The essential structural features of mitragynines, which differ from those of morphine and are responsible for the analgesic activity, were elucidated by pharmacological evaluation of the natural and synthetic derivatives. Among the mitragynine derivatives, 7-hydroxymitragynine, a minor constituent of M. speciosa, was found to exhibit potent antinociceptive activity in mice.
A further investigation of the leaves and stems of Saprosma scortechinii afforded 13 compounds, of which 10 are new compounds. These were elucidated as the bis-iridoid glucosides, saprosmosides G (1) and H (2), the iridoid glucoside, 6-O-epi-acetylscandoside (3), and the anthraquinones, 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone (4), 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (5), 1,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (6), 1,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinone (7), 1-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (8), 1,3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-beta-primeveroside (9), and 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (10). Structure assignments for all compounds were established by means of mass and NMR spectroscopies, chemical methods, and comparison with published data. The new anthraquinones were derivatives of munjistin and lucidin.
The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
The different states of water incorporated in wet granules were studied by a low-field benchtop 1H-NMR time-domain NMR (TD-NMR) instrument. Wet granules consisting different fillers [cornstarch (CS), microcrystalline cellulose (MCC), and D-mannitol (MAN)] with different water contents were prepared using a high-speed granulator, and then their spin-spin relaxation time (T2) was measured using the NMR relaxation technique. The experimental T2 relaxation curves were analyzed by the two-component curve fitting, and then the individual T2 relaxation behaviors of solid and water in wet granules were identified. According to the observed T2 values, it was confirmed that the molecular mobility of water in CS and MCC granules was more restricted than that in the MAN granule. The state of water appeared to be associated with the drying efficiency and moisture absorption capacity of wet granules. Thus, it was confirmed that the state of water significantly affected the wet granulation process and the characteristics of the resultant granules. In the final phase of this study, the effects of binders on the molecular mobility of water in granulation fluids and wet granules were examined. The state of water in granulation fluids was substantially changed by changing the binders. The difference was still detected in wet granules prepared by addition of these fluids to the fillers. In conclusion, TD-NMR can offer valuable knowledge on wet granulation from the viewpoint of molecular mobility of water.
Electrodeposition is commonly used to deposit ceramic or metal coating on metallic implants. Its utilization in depositing polymer microcapsule coating is currently being explored. However, there is no encapsulation of drug within polymer microcapsules that will enhance its chemical and biological properties. Therefore, in this study, ginseng which is known for its multiple therapeutic effects was encapsulated inside biodegradable poly(lactic-co-glycolic acid) (PLGA) microcapsules to be coated on pre-treated medical grade stainless steel 316L (SS316L) using an electrodeposition technique. Polyaniline (PANI) was incorporated within the microcapsules to drive the formation of microcapsule coating. The electrodeposition was performed at different current densities (1-3 mA) and different deposition times (20-60 s). The chemical composition, morphology and wettability of the microcapsule coatings were characterized through attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses. The changes of electrolyte colors, before and after the electrodeposition were also observed. The addition of PANI has formed low wettability and uniform microcapsule coatings at 2 mA current density and 40 s deposition time. Reduction in the current density or deposition time caused less attachment of microcapsule coatings with high wettability records. While prolonging either one parameter has led to debris formation and melted microcapsules with non-uniform wettability measurements. The color of electrolytes was also changed from milky white to dark yellow when the current density and deposition time increased. The application of tolerable current density and deposition time is crucial to obtain a uniform microcapsule coating, projecting a controlled release of encapsulated drug.
In the course of our chemotaxonomic study of the liverworts growing in Madagascar, mastigophoric acid methyl ester, along with eleven known compounds were isolated from Mastigophora diclados. Isolated metabolites showed that the Malagasy Mastigophora is more related to the samples from Borneo and Japan than to the Taiwanese or Malaysian ones. The biosynthesis of the herbertane type sesquiterpenoids from Mastigophora diclados is suggested to be similar to those found in the genus Herbertus. The herbertane-type sesquiterpenoids were screened for Staphylococcus aureus strain inhibition.
From the extract of a Malaysian herbal medicine, Lemuni Hitam (Diospyros sp.), which exhibited monoamine oxidase (MAO) inhibition, three new naphthoquinone and/or naphthalene dimers (lemuninols A-C, 1-3) were isolated together with 4,6-dihydroxy-5-methoxy-2-methyl-naphthalene (8) and six known monomers (4-7, 9 and 10). The structures were determined by spectroscopic methods including 2D-NMR techniques. Among them, lemuninol A showed 45% inhibition of MAO (mouse liver) at 5.0 x 10(-6) g/ml, and lemuninols B and C and a naphthoquinone (9) indicated weak activity. Some related quinones were also tested for their MAO inhibitory activities.
In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300-400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt in a concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not due to a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain when incubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenient spectrophotometric binding assay for the analysis of EIII-peptide interactions in a drug screening application.
The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
The aims of the present research were to mask the intensely bitter taste of sumatriptan succinate and to formulate orally disintegrating tablets (ODTs) of the taste masked drug. Taste masking was performed by coating sumatriptan succinate with Eudragit EPO using spray drying technique. The resultant microspheres were evaluated for thermal analysis, yield, particle size, entrapment efficiency and in vitro taste masking. The tablets were formulated by mixing the taste masked microspheres with different types and concentrations of superdisintegrants and compressed using direct compression method followed by sublimation technique. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. All the tablet formulations disintegrated in vitro within 37-410 s. The optimized formulation containing 5% Kollidon CL-SF released more than 90% of the drug within 15 min and the release was comparable to that of commercial product (Suminat®). In human volunteers, the optimized formulation was found to have a pleasant taste and mouth feel and disintegrated in the oral cavity within 41 s. The optimized formulation was found to be stable and bioequivalent with Suminat®.
A unique phenomenon in solid tumors, the enhanced permeability and retention (EPR) effect is now well known in the development of macromolecular anticancer therapy. However, cancers with low vascular permeability have posed a challenge for these EPR based therapeutic systems. An intrinsic vascular modulator, such as nitric oxide (NO), could augment the endogenous EPR effect. However, the most important aim has been to construct an effective NO delivery system for cancer. Since it is well known that human serum albumin is one of the most important endogenous NO transport proteins in human circulation, for more than a decade we have demonstrated that S-nitrosated human serum albumin dimer (SNO-HSA-Dimer) becomes an enhancer of the EPR effect. Here, we summarize the enhanced effect of SNO-HSA-Dimer on the anticancer effect of macromolecular anticancer drugs such as PEGylated liposomal doxorubicin (Doxil®). In C26-bearing mice with highly permeable vasculature, SNO-HSA-Dimer is able to increase more 3-fold the tumor accumulation of these anticancer drugs, thereby tripling their anticancer effects. Interestingly, the tumor accumulation of Doxil® in B16-bearing mice, which are characterized by a low permeable vasculature, increased more than 6-fold in the presence of SNO-HSA-Dimer, and the improved accumulation of Doxil® led to both increased survival and decreased tumor volume. These results strongly suggest that the more cancer is refractory, the more the SNO-HSA-Dimer could enhance the EPR effect via an endogenous albumin transport (EAT) system. Accordingly, we conclude that the EAT system is promising as a drug delivery system (DDS) strategy for refractory cancer therapy.
Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery. The experimental results of dynamic light scattering and Transmission Electron Microscope suggested that glutaraldehyde-crosslinked bLf nanoparticles with 150 nm in size could be produced by addition of 2-propanol as the desolvating solvent into the bLf solution adjusted to pH 6, followed by crosslinking with glutaraldehyde. These cross-linked bLf nanoparticles were found to be compatible to blood components and resistant against rapid degradation by pepsin. Thus, cross-linked bLf nanoparticles prepared by desolvation technique can be applied as a drug carrier for intravenous administration and oral delivery.
This study investigated the effect of manufacturing process variables of mini-tablets, in particular, the effect of process variables concerning fluidized bed granulation on tablet weight variation. Test granules were produced with different granulation conditions according to a definitive screening design (DSD). The five evaluated factors assigned to DSD were: the grinding speed of the sample mill at the grinding process of the active pharmaceutical ingredient (X1), microcrystalline cellulose content in granules (X2), inlet air temperature (X3), binder concentration (X4) and the spray speed of the binder solution (X5) at the granulation process. First, the relationships between the evaluated factors and the granule properties were investigated. As a result of the DSD analysis, the mode of action of granulation parameters on the granule properties was fully characterized. Subsequently, the variation in tablet weight was examined. In addition to mini-tablets (3 mm diameter), this experiment assessed regular tablets (8 mm diameter). From the results for regular tablets, the variation in tablet weight was affected by the flowability of granules. By contrast, regarding the mini-tablets, no significant effect on the variation of tablet weight was found from the evaluated factors. From this result, this study further focused on other important factors besides the granulation process, and then the effect of the die-hole position of the multiple-tip tooling on tablet weight variation was proven to be significant. Our findings provide a better understanding of manufacturing mini-tablets.
NMR relaxometry measurement by time domain NMR (TD-NMR) is a promising technique for characterizing the properties of active pharmaceutical ingredients (APIs). This study is dedicated to identifying the salt and free base of APIs by NMR relaxometry measured by the TD-NMR technique. Procaine (PC) and tetracaine (TC) were selected as model APIs to be tested. By using conventional methods including powder X-ray diffraction and differential scanning calorimetry, this study first confirmed that the salt and free base of the tested APIs differ from each other in their crystalline form. Subsequently, measurements of T1 and T2 relaxation were performed on the tested APIs using TD-NMR. The results demonstrated that these NMR relaxometry measurements have sufficient capacity to distinguish the difference between the free base and salt of the tested APIs. Furthermore, quantification of the composition of the binary powder blends consisting of salt and free bases was conducted by analyzing the acquired T1 and T2 relaxation curves. The analysis of the T1 relaxation curves provided a partly acceptable estimation: a good estimation of the composition was observed from PC powders, whereas for TC powders the estimation accuracy changed with the free base content in the binary blends. For the analysis on T2 relaxation curves, a precise estimation of the composition was observed from all the samples. From these findings, the NMR relaxometry measurement by TD-NMR, in particular the T2 relaxation measurement, is effective for evaluating the properties of APIs having different crystalline forms.