Displaying all 10 publications

Abstract:
Sort:
  1. Okuno T, Okada T, Kondo A, Suzuki M, Kobayashi M, Oya A
    Bull World Health Organ, 1968;38(4):547-63.
    PMID: 5302450
    The immunological characteristics of 26 strains of Japanese encephalitis virus (JEV) isolated in Japan and Malaya between 1935 and 1966 have been investigated mainly by the antibody-absorption variant of the haemagglutination-inhibition test, and to a certain extent also by conventional haemagglutination-inhibition and complement-fixation tests. The antibody-absorption technique shows promise as a routine method for the immunotyping of JEV.At present, two immunotypes can be distinguished. One comprises 2 strains, Nakayama-NIH and I-58, and is designated as the I-58 immunotype. The other immunotype, JaGAr 01, comprises 17 strains which share the characteristics of the JaGAr 01 strain, including one subline of the Nakayama strain, Nakayama-Yakken. The Nakayama-RFVL strain was found to have the characteristics of both immunotypes. The I-58 immunotype differs more markedly from related arboviruses, such as the Murray Valley encephalitis virus and the West Nile Eg101 strain, than does the JaGAr 01 immunotype.Evidence is presented which suggests that a given JEV strain can change immunotype on repeated passage through mice.
  2. Ismail KS, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A
    Biotechnol J, 2014 Dec;9(12):1519-25.
    PMID: 24924214 DOI: 10.1002/biot.201300553
    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.
  3. Hasunuma T, Ismail KSK, Nambu Y, Kondo A
    J Biosci Bioeng, 2014 Feb;117(2):165-169.
    PMID: 23916856 DOI: 10.1016/j.jbiosc.2013.07.007
    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production.
  4. Zhang C, Hasunuma T, Shiung Lam S, Kondo A, Ho SH
    Bioresour Technol, 2021 Nov;340:125638.
    PMID: 34358989 DOI: 10.1016/j.biortech.2021.125638
    Mariculture wastewater has drawn growing attention due to associated threats for coastal environment. However, most biological techniques exhibit unfavorable performance due to saline inhibition. Furthermore, only NaCl was used in most studies causing clumsy evaluation, undermining the potential of microalgal mariculture wastewater treatment. Herein, various concentrations of NaCl and sea salt are comprehensively examined and compared for their efficiencies of mariculture wastewater treatment and biodiesel conversion. The results indicate sea salt is a better trigger for treating wastewater (nearly 100% total nitrogen and total phosphorus removal) and producing high-quality biodiesel (330 mg/L•d). Structure equation model (SEM) further demonstrates the correlation of wastewater treatment performance and microalgal status is gradually weakened with increment of sea salt concentrations. Furthermore, metabolic analysis reveals enhanced photosynthesis might be the pivotal motivator for preferable outcomes under sea salt stimulation. This study provides new insights into microalgae-based approach integrating mariculture wastewater treatment and biodiesel production.
  5. Maizuliana H, Usui N, Terada K, Kondo A, Inoue Y
    Epileptic Disord, 2020 Feb 01;22(1):55-65.
    PMID: 32031536 DOI: 10.1684/epd.2020.1132
    We examined the clinical, semiological, scalp EEG, and neuropsychological features of patients with "pure" neocortical temporal lobe epilepsy (NTLE) who were successfully treated by neocortical temporal resection sparing the mesial temporal structures. This retrospective study included 17 patients with lesional NTLE who satisfied the following criteria: presence of a discrete structural lesion in the lateral temporal lobe on preoperative MRI; lateral temporal resection sparing the mesial temporal structures; follow-up for at least two years after surgery; and favourable postoperative seizure outcome (Engel Class I). The study included 10 females and seven males, and the age at surgery ranged from 15 to 48 years (mean: 30.7 years). Auras, video-recorded seizure semiology, interictal and ictal EEG, and pre- and post-operative neuropsychological data were reviewed. Twenty patients with mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, who had a favourable postoperative seizure outcome (Engel Class I), were selected as a control group. Age at seizure onset was significantly greater in patients with NTLE than in controls. A history of febrile convulsion was significantly less frequent in NTLE patients. Epigastric ascending sensation (6% versus 40%; p=0.017), oral automatisms (29% versus 80%; p=0.003), gestural automatisms (47% versus 80%; p=0.047), and dystonic posturing (0% versus 40%; p=0.003) were significantly less frequent in NTLE than controls. Ictal unitemporal rhythmic theta activity was also significantly less frequent in NTLE than controls (35.3% versus 75%; p=0.015). Preoperative IQ score (range: 68 to 114; mean: 88.9) and preoperative memory quotient score (range: 56-122; mean: 98.1) were significantly higher in NTLE (p=0.003 and p=0.048, respectively). There were notable differences in clinical, semiological, EEG, and neuropsychological features between "pure" NTLE and MTLE. These findings may be useful to identify the epileptogenic zone.
  6. Zain NA, Kahar P, Sudesh K, Ogino C, Kondo A
    J Biosci Bioeng, 2024 Aug;138(2):153-162.
    PMID: 38777650 DOI: 10.1016/j.jbiosc.2024.04.005
    Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.
  7. Juanssilfero AB, Kahar P, Amza RL, Yopi, Sudesh K, Ogino C, et al.
    J Biosci Bioeng, 2019 Jun;127(6):726-731.
    PMID: 30642786 DOI: 10.1016/j.jbiosc.2018.12.002
    The ability of oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source was evaluated. OPT sap was found to contain approximately 98 g/L glucose and 32 g/L fructose. Batch fermentations were performed using three different OPT sap medium conditions: regular sap, enriched sap, and enriched sap at pH 5.0. Under all sap medium conditions, the cell biomass and lipid production achieved were approximately 30 g/L and 60% (w/w), respectively. L. starkeyi tolerated acidified medium (initial pH ≈ 3) and produced considerable amounts of ethanol as well as xylitol as by-products. The fatty acid profile of L. starkeyi was remarkably similar to that of palm oil, one of the most common vegetable oil feedstock used in biodiesel production with oleic acid as the major fatty acid followed by palmitic, stearic and linoleic acids.
  8. Ismail KSK, Matano Y, Sakihama Y, Inokuma K, Nambu Y, Hasunuma T, et al.
    Bioresour Technol, 2022 Jan;343:126071.
    PMID: 34606923 DOI: 10.1016/j.biortech.2021.126071
    One of the potential bioresources for bioethanol production is Napier grass, considering its high cellulose and hemicellulose content. However, the cost of pretreatment hinders the bioethanol produced from being economical. This study examines the effect of hydrothermal process with dilute acid on extruded Napier grass, followed by enzymatic saccharification prior to simultaneous saccharification and co-fermentation (SScF). Extrusion facilitated lignin removal by 30.2 % prior to dilute acid steam explosion. Optimum pretreatment condition was obtained by using 3% sulfuric acid, and 30-min retention time of steam explosion at 190 °C. Ethanol yield of 0.26 g ethanol/g biomass (60.5% fermentation efficiency) was attained by short-term liquefaction and fermentation using a cellulose-hydrolyzing and xylose-assimilating Saccharomyces cerevisiae NBRC1440/B-EC3-X ΔPHO13, despite the presence of inhibitors. This proposed method not only reduced over-degradation of cellulose and hemicellulose, but also eliminated detoxification process and reduced cellulase loading.
  9. Kee PE, Yim HS, Kondo A, Lan JC, Ng HS
    Mar Drugs, 2021 Aug 17;19(8).
    PMID: 34436302 DOI: 10.3390/md19080463
    Aqueous biphasic electrophoresis system (ABES) incorporates electric fields into the biphasic system to separate the target biomolecules from crude feedstock. Ionic liquid (IL) is regarded as an excellent candidate as the phase-forming components for ABES because of the great electrical conductivity, which can promote the electromigration of biomolecules in ABES, and thereby enhances the separation efficiency of the target biomolecules from crude feedstock. The application of electric fields to the conventional biphasic system expedites the phase settling time of the biphasic system, which eases the subsequent scaling-up steps and reduces the overall processing time of the recovery process. Alkyl sulphate-based IL is a green and economical halide-free surfactant when compared to the other halide-containing IL. The feasibility of halide-free IL-based ABES to recover Kytococcus sedentarius TWHK01 keratinase was studied. Optimum partition coefficient (Ke = 7.53 ± 0.35) and yield (YT = 80.36% ± 0.71) were recorded with IL-ABES comprised of 15.0% (w/w) [EMIM][ESO4], 20.0% (w/w) sodium carbonate and 15% (w/w) crude feedstock. Selectivity (S) of 5.75 ± 0.27 was obtained with the IL-ABES operated at operation time of 5 min with 10 V voltage supplied. Halide-free IL is proven to be a potential phase-forming component of IL-ABES for large-scale recovery of keratinase.
  10. Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, et al.
    Hum Mutat, 2021 01;42(1):50-65.
    PMID: 33131168 DOI: 10.1002/humu.24129
    Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links