Displaying all 3 publications

Abstract:
Sort:
  1. Ting YW, Kong AS, Zain SM, Chan WK, Tan HL, Mohamed Z, et al.
    Clin Mol Hepatol, 2021 Jul;27(3):486-498.
    PMID: 33618508 DOI: 10.3350/cmh.2020.0162
    BACKGROUND/AIMS: 17β-hydroxysteroid dehydrogenase 13 (HSD17B13) variants were recently reported to have significantly lower odds of non-alcoholic fatty liver disease (NAFLD). This is a two-part study that aimed to evaluate the association of HSD17B13 variants with NAFLD and its histological severity, and to identify the association of the variants with clinical outcomes in a cohort of biopsy-proven NAFLD patients.

    METHODS: Consecutive biopsy-proven NAFLD patients and controls without fatty liver were recruited for this study between 2009 and 2014. Genotyping for HSD17B13 variants was performed using rhAmp assays. A total of 165 patients with NAFLD were monitored up until August 2019. Clinical outcomes were recorded.

    RESULTS: HSD17B13 rs72613567 TA allele and rs6834314 G allele were associated with lower odds of non-alcoholic steatohepatitis (NASH) in the overall cohort and among ethnic Chinese, but not among ethnic Malays or Indians (P<0.05). During a mean follow-up of 89 months, 32 patients (19.4%) experienced at least one clinical outcome (cardiovascular events, n=22; liver-related complications, n=6; extra-hepatic malignancy, n=5; and mortality, n=6). The rs72613567 homozygous TA allele and the rs6834314 homozygous G allele were independently associated with a lower incidence of liver-related complications (hazard ratio [HR], 0.004; 95% confidence interval [CI], 0.00-0.64; P=0.033 and HR, 0.01; 95% CI, 0.00-0.97; P=0.048, respectively) and were associated with lower grade of hepatocyte ballooning among the ethnic Chinese.

    CONCLUSION: HSD17B13 rs72613567 and rs6834314 variants were inversely associated with NAFLD and NASH, and were associated with lower incidence of adverse liver outcomes in a cohort of multi-ethnic Asian patients with NAFLD.

  2. Alkhoori MA, Kong AS, Aljaafari MN, Abushelaibi A, Erin Lim SH, Cheng WH, et al.
    Biomolecules, 2022 Nov 03;12(11).
    PMID: 36358976 DOI: 10.3390/biom12111626
    Date palm (Phoenix dactylifera L.) is an essential agricultural crop in most Middle Eastern countries, and its fruit, known as dates, is consumed by millions of people. Date seeds, a by-product of the date fruit processing industry, are a waste product used as food for domestic farm animals. Date seeds contain abundant sources of carbohydrates, oil, dietary fiber, and protein; they also contain bioactive phenolic compounds that may possess potential biological properties. In addition, its rich chemical composition makes date seeds suitable for use in food product formulation, cosmetics, and medicinal supplements. This review aims to provide a discourse on the nutritional value of date seeds. The latest data on the cytotoxicity of date seed compounds against cancer cell lines, its ability to combat diabetes, antioxidant potential, antimicrobial effect, and anti-inflammatory activity will be provided, considering its potential to be a nutritional therapeutic agent for chronic diseases. Application of date seeds in the form of powder and oil will also be discussed.
  3. Almakhari M, Chen Y, Kong AS, Moradigaravand D, Lai KS, Lim SE, et al.
    PLoS One, 2024;19(6):e0298092.
    PMID: 38905172 DOI: 10.1371/journal.pone.0298092
    The TBX1 gene plays a critical role in the development of 22q11.2 deletion syndrome (22q11.2DS), a complex genetic disorder associated with various phenotypic manifestations. In this study, we performed in-silico analysis to identify potentially deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) within the TBX1 gene and evaluate their functional and structural impact on 22q11.2DS. A comprehensive analysis pipeline involving multiple computational tools was employed to predict the pathogenicity of nsSNPs. This study assessed protein stability and explored potential alterations in protein-protein interactions. The results revealed the rs751339103(C>A), rs780800634(G>A), rs1936727304(T>C), rs1223320618(G>A), rs1248532217(T>C), rs1294927055 (C>T), rs1331240435 (A>G, rs1601289406 (A>C), rs1936726164 (G>A), and rs911796187(G>A) with a high-risk potential for affecting protein function and stability. These nsSNPs were further analyzed for their impact on post-translational modifications and structural characteristics, indicating their potential disruption of molecular pathways associated with TBX1 and its interacting partners. These findings provide a foundation for further experimental studies and elucidation of potential therapeutic targets and personalized treatment approaches for individuals affected by 22q11.2DS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links