Methods: Patients with CTO lesions treated with PF-SES were identified from the prospective multicenter international ISAR 2000 registry. The primary endpoint was clinically driven target lesion revascularization (TLR) at 9 months. Secondary endpoints were 9-month major adverse cardiac events (death, myocardial infarction, or TLR) (MACE) and the occurrence of stent thrombosis.
Results: A total of 111 patients with CTO lesions (n=127) were available for analysis. The 9-month clinical follow-up rate was 91%. The mean reference vessel diameter and lesion length were 2.76 mm ± 0.40 and 26.8 mm ± 13.1, respectively. The overall DAPT duration was 9.7 ± 2.8 months. Only one (1%) in-hospital MI was reported. The TLR and MACE rates at 9 months were 2% (2/101) and 5.9% (6/101), respectively. The 9-month accumulated rates of definite or probable stent thrombosis was 0% (0/101).
Conclusion: Revascularizations for CTO with PF-SES are associated with low rates of TLR and MACE at 9 months with no stent thrombosis. These initial findings need to be compared with results of other new generation DES of larger studies.
METHODS: An all-comer, worldwide single armed trial (ClinicalTrials.gov Identifier NCT02629575) was conducted to demonstrate the safety and efficacy of an ultra-thin strut, polymer-free sirolimus eluting stent (PF-SES). The primary endpoint was the 9-month target revascularization rate (TLR). Secondary endpoints included the rates of major adverse cardiac events (MACE), stent thrombosis (ST) and bleeding (BARC) in septuagenarians (≥70 years, <80 years), and in octogenarians (≥80 years) to be compared to the younger patient group (<70 years).
RESULTS: A total of 1607 patients were treated with PF-SES in the sub-70-year-old age group, 694 in septuagenarians, and 371 in the octogenarian patient group. At 9 months, the MACE rates were 7.2% in octogenarians, 5.3% in septuagenarians, and 3.0% in the younger patient group (P = 0.001). These were mostly driven by all-cause mortality (4.4% vs 1.9% vs 0.6%, P
METHODS: The Malaysian subpopulation of two all-comers observational studies based on the same protocol (ClinicalTrials.gov Identifiers: NCT02629575 and NCT02905214) were combined and compared to a Malaysian-only cohort which was treated with a later-generation PF-SES. The PF-SES's used differed only in their bare-metal backbone architecture, with otherwise identical sirolimus coating. The primary endpoint was the accumulated target lesion revascularization (TLR) rate at 12 months. The rates of major adverse cardiac events (MACE), stent thrombosis (ST) and myocardial infarction (MI) were part of the secondary endpoints.
RESULTS: A total of 643 patients were treated with either the first-generation PF-SES (413 patients) or second-generation PF-SES (230 patients). Patient demographics were similar in terms of age (p = 0.744), male gender (0.987), diabetes mellitus (p = 0.293), hypertension (p = 0.905) and acute coronary syndrome (ACS, 44.8% vs. 46.1%, p = 0.752) between groups. There were no differences between treatment groups in terms of lesion length (20.8 ± 7.3 mm vs. 22.9 ± 7.9, p = 0.111) or vessel diameter (2.87 ± 0.39 vs. 2.93 ± 0.40, p = 0.052) despite numerically smaller diameters in the first-generation PF-SES group. The second-generation PF-SES tended to have more complex lesions as characterized by calcification (10.3% vs. 16.2%, p = 0.022), severe tortuosity (3.5% vs. 6.9%, p = 0.041) and B2/C lesions (49.2% vs. 62.8%, p
BACKGROUND: Recently published randomized trials comparing BMS to DES with a focus on shortened dual-antiplatelet therapy reported incidences of stent thrombosis (ST) and bleeding complications (LEADERS FREE) in favor of drug eluting stents (DES).
METHODS: Data of previously published large-sale, international, single-armed, multicenter, observational studies of ultra-thin PF-SES, and BMS were propensity score (PS) matched for selected lesion morphological and cardiovascular risk factors to compare target lesion revascularization (TLR), myocardial infarction, cardiac death, major adverse cardiac events (MACE), bleeding complications and ST rates. Primary endpoint in both studies was TLR at 9 months.
RESULTS: At 9 months the rates of TLR was significantly lower in the PF-SES group as compared with patients treated with the BMS analogue of identical stent design (1.4% vs. 4.6%, P = 0.005). Likewise the 9-month MACE rates were lower in the PF-SES group (3.2% vs. 8.7%, P = 0.001) whereas there were no differences in the accumulated ST rates (0.5% vs. 1.5%, P = 0.109). Overall accumulated bleeding incidences (BARC 1-5) were not significantly different between PF-SES and BMS patients (1.8% vs. 2.7%, p = 0.388).
CONCLUSIONS: PF-SES are superior over analogue BMS of identical stent architecture in daily clinical routine with lower rates of TLR and MACE in a PS-matched, unselected patient population without differences in accumulated ST rates and bleeding frequencies given the currently favored postprocedural comedication (ClinicalTrials.gov Identifier NCT02629575).
METHODS: Patients who received PF-SES were investigated in an unselected large-scale international, single-armed, multicenter, 'all comers' observational study. The primary endpoint was the 9-month target lesion revascularisation (TLR) rate, whereas secondary endpoints included the 9-month major adverse cardiac events (MACE) and procedural success rates. A priori defined subgroups such as patients with ACS, diabetes, lesion subsets and procedural characteristics relative to DAPT were investigated.
RESULTS: A total of 2877 patients of whom 1084 had ACS were treated with PF-SES (1.31±0.75 stents per patient). At 9 months, the accumulated overall TLR rate was 2.3% (58/2513). There was no significant difference between ACS and stable CAD (2.6% vs 2.1%, p=0.389). However, the overall MACE rate was 4.3% (108/2513) with a higher rate in patients with ACS when compared with the stable CAD subgroup (6.1%, 58/947 vs 3.2%, 50/1566, p<0.001).
CONCLUSIONS: PF-SES angioplasty is safe and effective in the daily clinical routine with low rates of TLR and MACE in an unselected patient population. Our data are in agreement with prior clinical findings that extended DAPT duration beyond 6 months do not improve clinical outcomes in patients with stable CAD (ClinicalTrials.gov Identifier NCT02629575).
TRIAL REGISTRATION NUMBER: NCT02629575.
METHODS: We studied the systematic use of SBA with a low profile, non-slip element device prior to DCB angioplasty in an unselected, non-randomized patient population. This prospective, all-comers study enrolled patients with de novo lesions as well as in-stent restenotic lesions in bare metal stents (BMS-ISR) and drug-eluting stents (DES-ISR). The primary endpoint was the target lesion failure (TLF) rate at 9 months (ClinicalTrials.gov Identifier NCT02554292).
RESULTS: A total of 481 patients (496 lesions) were recruited to treat de novo lesions (78.4%, 377), BMS-ISR (4.0%, 19), and DES-ISR (17.6%, 85). Overall risk factors were acute coronary syndrome (ACS, 20.6%, 99), diabetes mellitus (46.8%, 225), and atrial fibrillation (8.5%, 41). Average lesion lengths were 16.7 ± 10.4 mm in the de novo group, and 20.1 ± 8.9 mm (BMS-ISR) and 16.2 ± 9.8 mm (DES-ISR) in the ISR groups. Scoring balloon diameters were 2.43 ± 0.41 mm (de novo), 2.71 ± 0.31 mm (BMS-ISR), and 2.92 ± 0.42 mm (DES-ISR) whereas DCB diameters were 2.60 ± 0.39 mm (de novo), 3.00 ± 0.35 mm (BMS-ISR), and 3.10 ± 0.43 mm (DES-ISR), respectively. The overall accumulated TLF rate of 3.0% (14/463) was driven by significantly higher target lesion revascularization rates in the BMS-ISR (5.3%, 1/19) and the DES-ISR group (6.0%, 5/84). In de novo lesions, the TLF rate was 1.1% (4/360) without differences between calcified and non-calcified lesions (p = 0.158) and small vs. large reference vessel diameters with a cutoff value of 3.0 mm (p = 0.901).
CONCLUSIONS: The routine use of a non-slip element scoring balloon catheter to prepare lesions suitable for drug-coated balloon angioplasty is associated with high procedural success rates and low TLF rates in de novo lesions.
Methods: By means of propensity score (PS) matching 234 individuals with de novo CAD were identified with similar demographic characteristics. This patient population was stratified in a 1:1 fashion according to a reference vessel diameter cut-off of 2.75 mm in small and large vessel disease. The primary endpoint was the rate of clinically driven target lesion revascularization (TLR) at 9 months.
Results: Patients with small vessel disease had an average reference diameter of 2.45 ± 0.23 mm, while the large vessel group averaged 3.16 ± 0.27 mm. Regarding 9-month major adverse cardiac event (MACE), 5.7% of the patients with small and 6.1% of the patients with large vessels had MACE (p=0.903). Analysis of the individual MACE components revealed a TLR rate of 3.8% in small and 1.0% in large vessels (p=0.200). Of note, no thrombotic events in the DCB treated coronary segments occurred in either group during the 9-month follow-up.
Conclusions: Our data demonstrate for the first time that DCB-only PCI of de novo lesions in large coronary arteries (>2.75 mm) is safe and as effective. Interventional treatment for CAD without permanent or temporary scaffolding, demonstrated a similar efficacy for large and small vessels.
METHODS: Patient-level data from two all-comers observational studies (ClinicalTrials.gov Identifiers: NCT02629575 and NCT02905214) were pooled and analyzed in terms of their primary endpoint. During the data verification process, we observed substantial deviations from DAPT guideline recommendations. To illuminate this gap between clinical practice and guideline recommendations, we conducted a post hoc analysis of DAPT regimens and clinical event rates for which we defined the net adverse event rate (NACE) consisting of target lesion revascularization (TLR, primary endpoint of all-comers observational studies) all-cause death, myocardial infarction (MI), stent thrombosis (ST), and bleeding events. A logistic regression was utilized to determine predictors why ticagrelor was used in stable coronary artery disease (CAD) patients instead of the guideline-recommended clopidogrel.
RESULTS: For stable CAD, the composite endpoint of clinical, bleeding, and stent thrombosis, i.e., NACE, between the clopidogrel and ticagrelor treatment groups was not different (5.4% vs. 5.1%, p = 0.745). Likewise, in the acute coronary syndrome (ACS) cohort, the NACE rates were not different between both DAPT strategies (9.2% vs. 9.3%, p = 0.927). There were also no differences in the accumulated rates for TLR, myocardial infarction ([MI], mortality, bleeding events, and stent thrombosis in elective and ACS patients. The main predictors for ticagrelor use in stable CAD patients were age
METHODS: Two all-comers observational studies based on the same protocol (ClinicalTrials.gov Identifiers: NCT02629575 and NCT02905214) were combined for data analysis to assure sufficient statistical power. The primary endpoint was the accumulated target lesion revascularization (TLR) rate at 9-12 months.
RESULTS: Of the total population of 7243 patients, 44.0% (3186) were recruited in the Mediterranean region and 32.0% (2317) in central Europe. The most prominent Asian region was South Korea (17.6%, 1274) followed by Malaysia (5.7%, 413). Major cardiovascular risk factors varied significantly across regions. The overall rates for accumulated TLR and MACE were low with 2.2% (140/6374) and 4.4% (279/6374), respectively. In ACS patients, there were no differences in terms of MACE, TLR, MI and accumulated mortality between the investigated regions. Moreover, dual antiplatelet therapy (DAPT) regimens were substantially longer in Asian countries even in patients with stable coronary artery disease as compared to those in Europe.
CONCLUSIONS: PF-SES angioplasty is associated with low clinical event rates in all regions. Further reductions in clinical event rates seem to be associated with longer DAPT regimens.