OBJECTIVE: The aim of this study was to analyze the effect of a virtual reality condition on students' learning ability and physiological state.
METHODS: Students were shown 6 sets of videos (3 videos in a two-dimensional condition and 3 videos in a three-dimensional condition), and their learning ability was analyzed based on a subsequent questionnaire. In addition, we analyzed the reaction of the brain and facial muscles of the students during both the two-dimensional and three-dimensional viewing conditions and used fractal theory to investigate their attention to the videos.
RESULTS: The learning ability of students was increased in the three-dimensional condition compared to that in the two-dimensional condition. In addition, analysis of physiological signals showed that students paid more attention to the three-dimensional videos.
CONCLUSIONS: A virtual reality condition has a greater effect on enhancing the learning ability of students. The analytical approach of this study can be further extended to evaluate other physiological signals of subjects in a virtual reality condition.
OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis.
METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18-22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked.
RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566).
CONCLUSION: We conclude that heart and brain activities are related.