Displaying all 4 publications

Abstract:
Sort:
  1. Tripathi BM, Kim M, Lai-Hoe A, Shukor NA, Rahim RA, Go R, et al.
    FEMS Microbiol Ecol, 2013 Nov;86(2):303-11.
    PMID: 23773164 DOI: 10.1111/1574-6941.12163
    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities.
  2. Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, et al.
    Microb Ecol, 2012 Apr;63(3):674-81.
    PMID: 21990015 DOI: 10.1007/s00248-011-9953-1
    Recent work has suggested that in temperate and subtropical trees, leaf surface bacterial communities are distinctive to each individual tree species and dominated by Alpha- and Gammaproteobacteria. In order to understand how general this pattern is, we studied the phyllosphere bacterial community on leaves of six species of tropical trees at a rainforest arboretum in Malaysia. This represents the first detailed study of 'true' tropical lowland tree phyllosphere communities. Leaf surface DNA was extracted and pyrosequenced targeting the V1-V3 region of 16S rRNA gene. As was previously found in temperate and subtropical trees, each tree species had a distinctive bacterial community on its leaves, clustering separately from other tree species in an ordination analysis. Bacterial communities in the phyllosphere were unique to plant leaves in that very few operational taxonomic units (0.5%) co-occurred in the surrounding soil environment. A novel and distinctive aspect of tropical phyllosphere communities is that Acidobacteria were one of the most abundant phyla across all samples (on average, 17%), a pattern not previously recognized. Sequences belonging to Acidobacteria were classified into subgroups 1-6 among known 24 subdivisions, and subgroup 1 (84%) was the most abundant group, followed by subgroup 3 (15%). The high abundance of Acidobacteria on leaves of tropical trees indicates that there is a strong relationship between host plants and Acidobacteria in tropical rain forest, which needs to be investigated further. The similarity of phyllosphere bacterial communities amongst the tree species sampled shows a significant tendency to follow host plant phylogeny, with more similar communities on more closely related hosts.
  3. Oh YM, Kim M, Lee-Cruz L, Lai-Hoe A, Go R, Ainuddin N, et al.
    Microb Ecol, 2012 Nov;64(4):1018-27.
    PMID: 22767122 DOI: 10.1007/s00248-012-0082-2
    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both tropical forestry and conservation.
  4. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links