Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Wang C, Lakshmipriya T, Gopinath SCB
    Nanoscale Res Lett, 2019 Jan 14;14(1):21.
    PMID: 30644016 DOI: 10.1186/s11671-018-2848-z
    The enzyme-linked immunosorbent assay (ELISA) has been widely used for disease surveillance and drug screening due to its relatively higher accuracy and sensitivity. Fine-tuning the ELISA is mandatory to elevate the specific detection of biomolecules at a lower abundance. Towards this end, higher molecular capture on the polystyrene (PS) ELISA surface is crucial for efficient detection, and it could be attained by immobilizing the molecules in the correct orientation. It is highly challenging to immobilize protein molecules in a well-aligned manner on an ELISA surface due to charge variations. We employed a 3-(aminopropyl) triethoxysilane (APTES)- and glutaraldehyde (GLU)-coupled PS surface chemical strategy to demonstrate the high performance with ELISA. A potassium hydroxide treatment followed by an equal ratio of 1% APTES and GLU attachment was found to be optimal, and a longer incubation with GLU favored maximum sensitivity. p24 is a vital early secreting antigen for diagnosing human immunodeficiency virus (HIV), and it has been used for efficient detection with the above chemistry. Three different procedures were followed, and they led to the improved detection of the HIV-p24 antigen at 1 nM, which is a 30-fold higher level compared to a conventional ELISA surface. The surface chemical functionalization shown here also displays a higher specificity with human serum and HIV-TAT. The above approach with the designed surface chemistry could also be recommended for disease diagnosis on other sensing surfaces involving the interaction of the probe and the analyte in heterogeneous test samples.
  2. Wang FA, Lakshmipriya T, Gopinath SCB
    Nanoscale Res Lett, 2018 Oct 23;13(1):331.
    PMID: 30353254 DOI: 10.1186/s11671-018-2753-5
    Tuberculosis (TB) is a highly contagious life-threatening disease caused by the bacterial pathogen Mycobacterium tuberculosis. ESAT-6, an abundant early secretory antigenic target protein by M. tuberculosis, found to play a vital role in virulence. Developing a friendly method for the detection of ESAT-6 at the lower concentration facilitates to treat TB at an earlier stage and helps to control the spreading of disease. Herein, a new single-step approach was designed and was done by pre-mixing ESAT-6 and antibody before being added to the gold nanoparticle (GNP) followed by the salt-induced aggregation. We could attain the detection limit of 1.25 pM, showing the aggregation of GNP and the red spectral shift. Further, a higher specificity was demonstrated with the lack of electrostatic biofouling by ESAT-6 on GNP and retained the dispersed GNP in the presence of 10-kDa culture filtrate protein from M. tuberculosis. The required precise antibody concentration for this assay was found to be 60 nM. The increment in the antibody concentration from 75 nM drastically diminishes the sensitivity to ~ 680-fold, due to the crowding effect. With this assay, we attested the suitability of colorimetric assay for efficiently detecting the smaller-sized protein.
  3. Wang F, Gopinath SC, Lakshmipriya T
    Int J Nanomedicine, 2019;14:8469-8481.
    PMID: 31695375 DOI: 10.2147/IJN.S219976
    BACKGROUND: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.

    MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.

    RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).

    CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

  4. Ma X, Lakshmipriya T, Gopinath SCB
    J Anal Methods Chem, 2019;2019:5426974.
    PMID: 31583159 DOI: 10.1155/2019/5426974
    Cancer is the uncontrollable abnormal division of cell growth, caused due to the varied reasons. Cancer can be expressed in any part of the body, and it is one of the death-causing diseases. Human reproductive organs are commonly damaged by cancer. In particular, the women reproductive system is affected by various cancers including ovarian, cervical, endometrial, vaginal, fallopian tube, and vulvar cancers. Identifying these cancers at earlier stages prevents the damage to the organs. Aptamer is the potential probe that can identify these cancers. Aptamer is an artificial antibody selected from the randomized library of molecules and has a high binding affinity to the target biomarker. Targeting cancers in the reproductive organs using aptamers showed an excellent efficiency of detection compared to other probes. Different aptamers have been generated against the gynaecological cancer biomarkers, which include HE4, CA125, VEGF, OCCA (for ovarian cancer), EGFR, FGFR1, K-ras (for endometrial cancer), HPV E-16, HPV E-7, HPV E-6, tyrosine, and kinase (for cervical cancer), which help to identify the cancers in woman reproductive organs. In this overview, the biomarkers for gynecologic cancers and the relevant diagnosing systems generated using the specific aptamers are discussed. Furthermore, the therapeutic applications of aptamer with gynaecological cancers are narrated.
  5. Zhang J, Lakshmipriya T, Gopinath SCB
    ACS Omega, 2020 Oct 13;5(40):25899-25905.
    PMID: 33073115 DOI: 10.1021/acsomega.0c03260
    The primary reasons for myocardial infarction (MI) are pericarditis, arrhythmia, and heart failure, causing predominant deaths worldwide. Patients need a potential diagnostic system and treatment before cardiomyocyte damage. Cardiac biomarkers are released from myocytes immediately after a heart attack. Troponin is an efficient biomarker released from dead cells within a few hours. Aptamers are artificial antibodies used effectively in the biosensor field for biomarker detection. Along with aptamers, the application of nanomaterials is also expected to enhance the detection limits of biosensors. In this investigation, selected aptamers against cardiac troponin I (cTnI) were conjugated with gold nanoparticles (GNPs) to diagnose MI and compared with an aptamer-only control group on an interdigitated electrode surface. Based on electroanalysis, cTnI was detected at concentrations as low as 1 fM, and the detection limit improved to 100 aM when the aptamer was conjugated with GNP. In addition, aptamer-GNP conjugates increased the current level at the tested concentrations of cTnI. Control experiments with noncomplementary aptamers and relevant proteins did not result in notable changes in the current, demonstrating the selective detection of cTnI.
  6. Lakshmipriya T, Gopinath SC, Tang TH
    PLoS One, 2016;11(3):e0151153.
    PMID: 26954237 DOI: 10.1371/journal.pone.0151153
    Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors.
  7. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T
    Biomed Res Int, 2017 03 28;2017:2195808.
    PMID: 28459056 DOI: 10.1155/2017/2195808
  8. Lakshmipriya T, Gopinath SCB, Hashim U, Murugaiyah V
    Int J Biol Macromol, 2017 Dec;105(Pt 1):796-800.
    PMID: 28732727 DOI: 10.1016/j.ijbiomac.2017.07.115
    Enzyme Linked Immunosorbent Assay (ELISA) is a standard assay that has been used widely to validate the presence of analyte in the solution. With the advancement of ELISA, different strategies have shown and became a suitable immunoassay for a wide range of analytes. Herein, we attempted to provide additional evidence with ELISA, to show its suitability for multi-analyte detection. To demonstrate, three clinically relevant targets have been chosen, which include 16kDa protein from Mycobacterium tuberculosis, human blood clotting Factor IXa and a tumour marker Squamous Cell Carcinoma antigen. Indeed, we adapted the routine steps from the conventional ELISA to validate the occurrence of analytes both in homogeneous and heterogeneous solutions. With the homogeneous and heterogeneous solutions, we could attain the sensitivity of 2, 8 and 1nM for the targets 16kDa protein, FIXa and SSC antigen, respectively. Further, the specific multi-analyte validations were evidenced with the similar sensitivities in the presence of human serum. ELISA assay in this study has proven its applicability for the genuine multiple target validation in the heterogeneous solution, can be followed for other target validations.
  9. Wang H, Lakshmipriya T, Chen Y, Gopinath SCB
    Biomed Res Int, 2019;2019:2807123.
    PMID: 31080815 DOI: 10.1155/2019/2807123
    Cervical cancer is a life-threatening complication, appearing as the uncontrolled growth of abnormal cells in the lining of the cervix. Every year, increasing numbers of cervical cancer cases are reported worldwide. Different identification strategies were proposed to detect cervical cancer at the earlier stages using various biomarkers. Squamous cell carcinoma antigen (SCC-Ag) is one of the potential biomarkers for this diagnosis. Nanomaterial-based detection systems were shown to be efficient with different clinical biomarkers. In this study, we have demonstrated strontium oxide-modified interdigitated electrode (IDE) fabrication by the sol-gel method and characterized by scanning electron microscopy and high-power microscopy. Analysis of the bare devices indicated the reproducibility with the fabrication, and further pH scouting on the device revealed that the reliability of the working pH ranges from 3 to 9. The sensing surface was tested to detect SCC-Ag against its specific antibody; the detection limit was found to be 10 pM, and the sensitivity was in the range between 1 and 10 pM as calculated by 3σ. The specificity experiment was carried out using major proteins from human serum, such as albumin and globulin. SCC-Ag was shown to be selectively detected on the strontium oxide-modified IDE surface.
  10. Guo S, Lakshmipriya T, Gopinath SCB, Anbu P, Feng Y
    Nanoscale Res Lett, 2019 Jul 02;14(1):222.
    PMID: 31267309 DOI: 10.1186/s11671-019-3058-z
    Developing an enhanced diagnosis using biosensors is important for the treatment of patients before disease complications arise. Improving biosensors would enable the detection of various low-abundance disease biomarkers. Efficient immobilization of probes/receptors on the sensing surface is one of the efficient ways to enhance detection. Herein, we introduced the pre-alkaline sensing surface with amine functionalization for capturing gold nanoparticle (GNP) conjugated to human blood clotting factor IX (FIX), and we demonstrated the excellent performance of the strategy. We have chosen the enzyme-linked immunosorbent assay (ELISA) and the interdigitated electrode (IDE), which are widely used, to demonstrate our method. The optimal amount for silanization has been found to be 2.5%, and 15-nm-sized GNPs are ideal and characterized. The limit of FIX detection was attained with ELISA at 100 pM with the premixed GNPs and FIX, which shows 60-fold improvement in sensitivity without biofouling, as compared to the conventional ELISA. Further, FIX was detected with higher specificity in human serum at a 1:1280 dilution, which is equivalent to 120 pM FIX. These results were complemented by the analysis on IDE, where improved detection at 25 pM was achieved, and FIX was detected in human serum at the dilution of 1:640. These optimized surfaces are useful for improving the detection of different diseases on varied sensing surfaces.
  11. Qian J, Xie J, Lakshmipriya T, Gopinath SCB, Xu H
    Curr Med Imaging, 2020;16(5):534-544.
    PMID: 32484087 DOI: 10.2174/1573405615666190130164037
    Cardiovascular death is one of the leading causes worldwide; an accurate identification followed by diagnosing the cardiovascular disease increases the chance of a better recovery. Among different demonstrated strategies, imaging on cardiac infections yields a visible result and highly reliable compared to other analytical methods. Two-dimensional spot tracking imaging is the emerging new technology that has been used to study the function and structure of the heart and test the deformation and movement of the myocardium. Particularly, it helps to capture the images of each segment in different directions of myocardial strain values, such as valves of radial strain, longitudinal strain, and circumferential strain. In this overview, we discussed the imaging of infections in the heart by using the two-dimensional spot tracking.
  12. Zheng S, Zhang H, Lakshmipriya T, Gopinath SCB, Yang N
    Biomed Res Int, 2019;2019:9726967.
    PMID: 31380444 DOI: 10.1155/2019/9726967
    Gestational diabetes (hyperglycaemia) is an elevated blood sugar level diagnosed during the period of pregnancy and affects the baby's health. Hyperglycaemia has been found within the gestational weeks between 24 and 28, and the foetus has also the possibility of getting out prior to this test frame; it causes excessive birth weight, early birth, low-blood sugar level, respiratory distress syndrome, and type-2 diabetes to the mother. It creates a mandatory situation to identify the hyperglycaemia at least during the pregnancy weeks from 18 to 20. Further, a continuous monitoring of the level of glucose is necessary for the proper delivery. In this work, a method is introduced for glucose detection at 0.06 mg/mL, assisted by gold nanorod (GNR)-conjugated glucose oxidase (GOx) on interdigitated electrode sensor. In the absence of GNR, GOx shows the limit of glucose detection to be 0.25 mg/mL. Moreover, with GOx-GNR the reactions of all the glucose concentrations have recorded higher levels of the current from the baseline. With the specificity analysis, it was found that the glucose only reacts with GOx-GNR and discriminates other sugars efficiently. This method of detection is useful to diagnose and continuously monitor the glucose level during the pregnancy period.
  13. You X, Gopinath SCB, Lakshmipriya T, Li D
    J Anal Methods Chem, 2019;2019:6526850.
    PMID: 31886023 DOI: 10.1155/2019/6526850
    Parkinson's disease (PD) is a progressive health issue and influences an increasingly larger number of people, especially at older ages, affecting the central nervous system (CNS). Alpha-synuclein is a biomarker closely correlated with the CNS and PD. The loss of neuronal cells in the substantia nigra leads to the aggregation of alpha-synuclein in the form of Lewy bodies, and Lewy neuritis is a neuropathological hallmark. The therapeutic approach of PD focuses on alpha-synuclein as an important substrate of PD pathology. So far, research has focused on antialpha-synuclein to minimize the burden of extracellular alpha-synuclein in the brain, and as a consequence, it ameliorates inflammation. Interdigitated electrode (IDE) biosensors are efficient tools for detecting various analytes and were chosen in this study to detect alpha-synuclein on amine-modified surfaces by using antiaptamer-alpha-synuclein as the probe. In addition, a gold nanoparticle-conjugated aptamer was used to enhance the detection limit. The limit of detection for the binding between alpha-synuclein and aptamer was found to be 10 pM. Control experiments were performed with two closely related proteins, amyloid-beta and tau, to reveal the specificity; the results show that the aptamer only recognized alpha-synuclein. The proposed strategy helps to identify the binding of aptamer and alpha-synuclein and provides a possible method to lower alpha-synuclein levels and inflammation in PD patients.
  14. Citartan M, Gopinath SCB, Chen Y, Lakshmipriya T, Tang TH
    Biosens Bioelectron, 2015 Jan 15;63:86-98.
    PMID: 25058943 DOI: 10.1016/j.bios.2014.06.068
    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection.
  15. Gopinath SC, Tang TH, Chen Y, Citartan M, Tominaga J, Lakshmipriya T
    Biosens Bioelectron, 2014 Nov 15;61:357-69.
    PMID: 24912036 DOI: 10.1016/j.bios.2014.05.024
    Influenza viruses, which are RNA viruses belonging to the family Orthomyxoviridae, cause respiratory diseases in birds and mammals. With seasonal epidemics, influenza spreads all over the world, resulting in pandemics that cause millions of deaths. Emergence of various types and subtypes of influenza, such as H1N1 and H7N9, requires effective surveillance to prevent their spread and to develop appropriate anti-influenza vaccines. Diagnostic probes such as glycans, aptamers, and antibodies now allow discrimination among the influenza strains, including new subtypes. Several sensors have been developed based on these probes, efforts made to augment influenza detection. Herein, we review the currently available sensing strategies to detect influenza viruses.
  16. Gopinath SC, Tang TH, Chen Y, Citartan M, Lakshmipriya T
    Biosens Bioelectron, 2014 Oct 15;60:332-42.
    PMID: 24836016 DOI: 10.1016/j.bios.2014.04.014
    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection.
  17. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links