METHODS: We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.
RESULTS: Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p
METHODS: Patients with AIH-ACLF without baseline infection/hepatic encephalopathy were identified from APASL ACLF research consortium (AARC) database. Diagnosis of AIH-ACLF was based mainly on histology. Those treated with steroids were assessed for non-response (defined as death or liver transplant at 90 days for present study). Laboratory parameters, AARC, and model for end-stage liver disease (MELD) scores were assessed at baseline and day 3 to identify early non-response. Utility of dynamic SURFASA score [- 6.80 + 1.92*(D0-INR) + 1.94*(∆%3-INR) + 1.64*(∆%3-bilirubin)] was also evaluated. The performance of early predictors was compared with changes in MELD score at 2 weeks.
RESULTS: Fifty-five out of one hundred and sixty-five patients (age-38.2 ± 15.0 years, 67.2% females) with AIH-ACLF [median MELD 24 (IQR: 22-27); median AARC score 7 (6-9)] given oral prednisolone 40 (20-40) mg per day were analyzed. The 90 day transplant-free survival in this cohort was 45.7% with worse outcomes in those with incident infections (56% vs 28.0%, p = 0.03). The AUROC of pre-therapy AARC score [0.842 (95% CI 0.754-0.93)], MELD [0.837 (95% CI 0.733-0.94)] score and SURFASA score [0.795 (95% CI 0.678-0.911)] were as accurate as ∆MELD at 2 weeks [0.770 (95% CI 0.687-0.845), p = 0.526] and better than ∆MELD at 3 days [0.541 (95% CI 0.395, 0.687), p 6, MELD score > 24 with SURFASA score ≥ - 1.2, could identify non-responders at day 3 (concomitant- 75% vs either - 42%, p
METHODS: Altogether 1021 patients were analyzed for the severity and organ failure at admission to determine transplant eligibility and 28 day survival with or without transplant.
RESULTS: The ACLF cohort [mean age 44 ± 12.2 years, males 81%) was of sick patients; 55% willing for LT at admission, though 63% of them were ineligible due to sepsis or organ failure. On day 4, recovery in sepsis and/or organ failure led to an improvement in transplant eligibility from 37% at baseline to 63.7%. Delay in LT up to 7 days led to a higher incidence of multiorgan failure (p
METHODS: Patients with MAFLD-ACLF were recruited from the AARC registry. The diagnosis of MAFLD-ACLF was made when the treating unit had identified the etiology of chronic liver disease (CLD) as MAFLD (or previous nomenclature such as NAFLD, NASH, or NASH-cirrhosis). Patients with coexisting other etiologies of CLD (such as alcohol, HBV, HCV, etc.) were excluded. Data was randomly split into derivation (n=258) and validation (n=111) cohorts at a 70:30 ratio. The primary outcome was 90-day mortality. Only the baseline clinical, laboratory features and severity scores were considered.
RESULTS: The derivation group had 258 patients; 60% were male, with a mean age of 53. Diabetes was noted in 27%, and hypertension in 29%. The dominant precipitants included viral hepatitis (HAV and HEV, 32%), drug-induced injury (DILI, 29%) and sepsis (23%). MELD-Na and AARC scores upon admission averaged 32±6 and 10.4±1.9. At 90 days, 51% survived. Non-viral precipitant, diabetes, bilirubin, INR, and encephalopathy were independent factors influencing mortality. Adding diabetes and precipitant to MELD-Na and AARC scores, the novel MAFLD-MELD-Na score (+12 for diabetes, +12 for non-viral precipitant) and MAFLD-AARC score (+5 for each) were formed. These outperformed the standard scores in both cohorts.
CONCLUSION: Almost half of MAFLD-ACLF patients die within 90 days. Diabetes and non-viral precipitants such as DILI and sepsis lead to adverse outcomes. The new MAFLD-MELD-Na and MAFLD-AARC scores provide reliable 90-day mortality predictions for MAFLD-ACLF patients.