Local people in Sarawak, Malaysia produce sago starch, commonly referred as lemantak, using traditional method for authentic meals and delicacies. The quality of lemantak degrades with time due to its high moisture content limiting the potential for a wider market, and hence affecting the socio-economy of those whose livelihood depends on sago starch production. The objective of the present work was to evaluate the changes in the properties of traditionally processed dried Sarawak sago starch. In order to achieve this, sago starch was extracted using a well-established traditional process and was dried at 40°C to produce sago starch with moisture contents of 40%, 30%, 20% and 10% wet basis. The effect of moisture content on the physical properties was studied through colour analysis, microscopic analysis, and particle size distribution. Analysis on resistant starch content was also performed. Changes on the hydration and functional properties was monitored by measuring the water absorption index (WAI), water solubility index (WSI), swelling capacity (SC), and gelatinisation behaviour. Lastly, Fourier transform-infrared spectroscopy (FT-IR) was applied to observe the changes in amorphous and crystalline areas. The physical properties analysis showed changes in starch colour and granule surface; but the change on granule size varied. Dried starch with lower moisture content exhibited higher resistant starch, absorption index, and peak temperature, but lower solubility index, swelling capacity, peak viscosity, crystalline index, and amorphous index. It is suggested that moisture content affected the changes in traditionally processed sago starch properties which was influenced by few components namely polyphenol, lipid, amylose-lipid complex, and inter-molecular hydrogen bond.
This study reports for the first time molecular detection of Anaplasma platys infection in 4 (13.3%) of 30 Malaysian dogs investigated. A low occurrence (3.3%) of Babesia gibsoni was also noted, being detected in one of the 30 dogs. Rickettsia, Bartonella, Orientia tsutsugamushi, and Ehrlichia DNA were not detected in the dog blood samples. The role of A. platys as an agent of canine anaplasmosis and its transmission through Rhipicephalus sanguineus ticks merits further investigation.
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.