Displaying all 9 publications

Abstract:
Sort:
  1. Mohammad-Noor N, Moestrup Ø, Lundholm N, Fraga S, Adam A, Holmes MJ, et al.
    J Phycol, 2013 Jun;49(3):536-45.
    PMID: 27007042 DOI: 10.1111/jpy.12062
    Coolia is a widespread and ecologically important genus of benthic marine dinoflagellates found in tropical regions. Historically, there has been taxonomic confusion about the taxonomy and toxicity of this group. The goal of this study was to resolve morphological questions concerning Coolia tropicalis and determine the taxonomic identity of the Australian Coolia isolate which has been reported to produce cooliatoxins. To accomplish this, the morphology of tropical strains from Belize (the type locality of C. tropicalis), Malaysia, Indonesia, and Australia were examined and compared to published reports. The morphological analysis showed that C. tropicalis differs from the original description in that it has a slightly larger size (35-47 μm long by 30-45 μm wide versus 23-40 μm long by 25-39 μm wide), and the shape of fourth apical plate, and the length of Po plate (7.4-12 μm versus 7 μm). Based on both morphology and phylogenetic analysis using LSU D1- D3 rDNA sequences, the clones of C. tropicalis from Malaysia, Indonesia, and Belize were found to form a monophyletic clade within the genus. The strain producing cooliatoxin was found to be C. tropicalis, not Coolia monotis as originally assumed. To explore the factors influencing the growth of Coolia species, the growth rates of C. tropicalis and Coolia malayensis were determined at different temperatures and salinities. Both species tolerated a wide range of temperatures, but cannot survive at temperatures <20°C or >35°C. C. monotis, the dominant species reported in the literature, probably does not produce toxins.
  2. Dong HC, Lundholm N, Teng ST, Li A, Wang C, Hu Y, et al.
    Harmful Algae, 2020 09;98:101899.
    PMID: 33129456 DOI: 10.1016/j.hal.2020.101899
    The diatom genus Pseudo-nitzschia, which has been associated with amnesic shellfish poisoning events globally, is also one of the key harmful microalga groups in Guangdong coastal waters, off the north coast of the South China Sea. In order to explore the diversity and toxigenic characteristics, Pseudo-nitzschia isolates were established. Based on a combination of morphological and molecular features, in total 26 different Pseudo-nitzschia taxa were identified, including two new species, P. uniseriata H.C. Dong & Yang Li and P. yuensis H.C. Dong & Yang Li. Morphologically, P. uniseriata is unique by having striae mainly comprising one row of poroids, which are simple without divided hymen internally, and each poroid containing one, seldom two sectors. Pseudo-nitzschia yuensis is characterized by having striae comprising one to two rows of poroids. In biseriate striae, the poroids are polygonal and irregularly distributed, and a discontinuous row of poroids may be present in the middle. In uniseriate striae, the poroids usually contain 1-5 sectors. Both taxa are well differentiated from other Pseudo-nitzschia species in phylogenetic analyses inferred from ITS2 sequence-structure information. Pseudo-nitzschia uniseriata is sister to P. lineola, whereas P. yuensis forms a group together with P. micropora and P. delicatissima. When comparing ITS2 secondary structure, two hemi-compensatory base change (HCBCs) are found between P. uniseriata and P. lineola. One compensatory base change (CBC) and four HCBCs are found between P. yuensis and P. delicatissima, and there is one CBC and five HCBCs between P. yuensis and P. micropora. The ability of cultured strains to produce particulate DA (pDA) revealed production of pDA in twenty-nine strains belonging to seven species: P. bipertita, P. caciantha, P. cuspidata, P. fraudulenta, P. fukuyoi, P. lundholmiae and P. multiseries. This is the first report of P. bipertita being toxic, with pDA content of 15.6 ± 2.1 fg cell-1. The presence of brine shrimps significantly increased pDA content in P. cuspidata, P. fukuyoi, P. lundholmiae and P. multiseries 1.4 to 7 times, and induced pDA production in P. fraudulenta from below detection limit to 17.5 ± 1.6 fg cell-1. The highest pDA concentration, 4830.5 ± 120.3 fg cell-1, was detected in P. multiseries, a level much lower than previous reports on P. multiseries from North America and Europe. Overall, the cellular toxin levels in Pseudo-nitzschia spp. were low in Guangdong coastal isolates.
  3. Chen XM, Pang JX, Huang CX, Lundholm N, Teng ST, Li A, et al.
    J Phycol, 2021 Feb;57(1):335-344.
    PMID: 33174223 DOI: 10.1111/jpy.13101
    To explore the species diversity and toxin profile of Pseudo-nitzschia, monoclonal strains were established from Chinese southeast coastal waters. The morphology was examined under light and transmission electron microscopy. The internal transcribed spacer region of ribosomal DNA was sequenced for phylogenetic analyses, and the secondary structure of ITS2 was predicted and compared among allied taxa. A combination of morphological and molecular data showed the presence of two new species, Pseudo-nitzschia hainanensis sp. nov. and Pseudo-nitzschia taiwanensis sp. nov. Pseudo-nitzschia hainanensis was characterized by a dumpy-lanceolate valve with slightly blunt apices and a central nodule, as well as striae comprising two rows of poroids. Pseudo-nitzschia taiwanensis was characterized by a slender-lanceolate valve, and striae comprising one row of split poroids. The poroid structure mainly comprised two sectors. Both taxa constituted their own monophyletic lineage in the phylogenetic analyses inferred from ITS2 rDNA and were well differentiated from other Pseudo-nitzschia species. Morphologically, P. hainanensis and P. taiwanensis could be assigned to the Pseudo-nitzschia delicatissima and the Pseudo-nitzschia pseudodelicatissima complex, respectively. Particulate domoic acid was measured using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), but no detectable pDA was found. With the description of the two new species, the species diversity of genus Pseudo-nitzschia reaches 58 worldwide, among which 31 have been recorded from Chinese coastal waters.
  4. Li Y, Huang CX, Xu GS, Lundholm N, Teng ST, Wu H, et al.
    Harmful Algae, 2017 07;67:119-130.
    PMID: 28755714 DOI: 10.1016/j.hal.2017.06.008
    The genus Pseudo-nitzschia has attracted attention because of production of the toxin, domoic acid (DA), causing Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia blooms occur frequently in Chinese coastal waters, and DA has been detected in several marine organisms, but so far no Pseudo-nitzschia strains from Chinese waters have been shown to produce DA. In this study, monoclonal Pseudo-nitzschia strains were established from Chinese coastal waters and examined using light microscopy, electron microscopy and molecular markers. Five strains, sharing distinct morphological and molecular features differentiating them from other Pseudo-nitzschia species, represent a new species, Pseudo-nitzschia simulans sp. nov. Morphologically, the taxon belongs to the P. pseudodelicatissima group, cells possessing a central nodule and each stria comprising one row of poroids. The new species is characterized by the poroid structure, which typically comprises two sectors, each sector located near opposite margins of the poroid. The production of DA was examined by liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of cells in stationary growth phase. Domoic acid was detected in one of the five strains, with concentrations around 1.05-1.54 fg cell-1. This is the first toxigenic diatom species reported from Chinese waters.
  5. Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP
    Harmful Algae, 2018 11;79:3-43.
    PMID: 30420013 DOI: 10.1016/j.hal.2018.06.001
    Some diatoms of the genera Pseudo-nitzschia and Nitzschia produce the neurotoxin domoic acid (DA), a compound that caused amnesic shellfish poisoning (ASP) in humans just over 30 years ago (December 1987) in eastern Canada. This review covers new information since two previous reviews in 2012. Nitzschia bizertensis was subsequently discovered to be toxigenic in Tunisian waters. The known distribution of N. navis-varingica has expanded from Vietnam to Malaysia, Indonesia, the Philippines and Australia. Furthermore, 15 new species (and one new variety) of Pseudo-nitzschia have been discovered, bringing the total to 52. Seven new species were found to produce DA, bringing the total of toxigenic species to 26. We list all Pseudo-nitzschia species, their ability to produce DA, and show their global distribution. A consequence of the extended distribution and increased number of toxigenic species worldwide is that DA is now found more pervasively in the food web, contaminating new marine organisms (especially marine mammals), affecting their physiology and disrupting ecosystems. Recent findings highlight how zooplankton grazers can induce DA production in Pseudo-nitzschia and how bacteria interact with Pseudo-nitzschia. Since 2012, new discoveries have been reported on physiological controls of Pseudo-nitzschia growth and DA production, its sexual reproduction, and infection by an oomycete parasitoid. Many advances are the result of applying molecular approaches to discovering new species, and to understanding the population genetic structure of Pseudo-nitzschia and mechanisms used to cope with iron limitation. The availability of genomes from three Pseudo-nitzschia species, coupled with a comparative transcriptomic approach, has allowed advances in our understanding of the sexual reproduction of Pseudo-nitzschia, its signaling pathways, its interactions with bacteria, and genes involved in iron and vitamin B12 and B7 metabolism. Although there have been no new confirmed cases of ASP since 1987 because of monitoring efforts, new blooms have occurred. A massive toxic Pseudo-nitzschia bloom affected the entire west coast of North America during 2015-2016, and was linked to a 'warm blob' of ocean water. Other smaller toxic blooms occurred in the Gulf of Mexico and east coast of North America. Knowledge gaps remain, including how and why DA and its isomers are produced, the world distribution of potentially toxigenic Nitzschia species, the prevalence of DA isomers, and molecular markers to discriminate between toxigenic and non-toxigenic species and to discover sexually reproducing populations in the field.
  6. Niu B, Pang J, Lundholm N, Liang C, Teng ST, Zheng Q, et al.
    Harmful Algae, 2024 Mar;133:102602.
    PMID: 38485439 DOI: 10.1016/j.hal.2024.102602
    Pseudo-nitzschia is a cosmopolitan phytoplankton genus of which some species can form blooms and produce the neurotoxin domoic acid (DA). Identification of Pseudo-nitzschia is generally based on field material or strains followed by morphological and/or molecular characterization. However, this process is time-consuming and laborious, and can not obtain a relatively complete and reliable profile of the Pseudo-nitzschia community, because species with low abundance in the field or potentially unavailable for culturing may easily be overlooked. In the present study, specific ITS primer sets were designed and evaluated using in silico matching. The primer set ITS-84F/456R involving the complete ITS1 region was found optimal. Based on matching with a Pseudo-nitzschia ITS1 reference sequence database carefully-calibrated in this study, a metabarcoding approach using annotated amplicon sequence variants (ASV) was applied in the Taiwan Strait of the East China Sea during two cruises in the spring and summer of 2019. In total, 48 Pseudo-nitzschia species/phylotypes including 36 known and 12 novel were uncovered, and verified by haplotype networks, ITS2 secondary structure comparisons and divergence analyses. Correlation analyses revealed that temperature was a key factor affecting the seasonal variation of the Pseudo-nitzschia community. This study provides an overview of the Pseudo-nitzschia community in the Taiwan Strait, with new insights into the diversity. The developed metabarcoding approach may be used elsewhere as a standard reference for accurate annotation of Pseudo-nitzschia.
  7. Lim HC, Leaw CP, Su SN, Teng ST, Usup G, Mohammad-Noor N, et al.
    J Phycol, 2012 Oct;48(5):1232-47.
    PMID: 27011282 DOI: 10.1111/j.1529-8817.2012.01213.x
    Field sampling was undertaken to investigate the occurrence of Pseudo-nitzschia Peragallo species in eight locations along the coast of Malaysian Borneo. A total of 108 strains of Pseudo-nitzschia species were isolated, and their morphology examined with SEM and TEM. Additionally, molecular data from nuclear-encoded partial LSU rDNA, and ITS regions, were characterized. A total of five species were confidently identified based on a combination of distinct morphological characteristics and supporting molecular evidence: P. brasiliana Lundholm, Hasle & Fryxell, P. cuspidata (Hasle) Hasle, P. dolorosa Lundholm & Moestrup, P. micropora Priisholm, Moestrup & Lundholm, and P. pungens (Grunow) Hasle var. pungens. However, one morphotype from Sarawak, while somewhat similar to P. caciantha, showed significant morphological distinction from this and any other of the currently described species. Most notably this morphotype possessed a characteristic pore arrangement in the poroids, with the fine pores in each perforation sector arranged in circles. Pair-wise sequence comparison of the LSU rDNA between this unidentified morphotype and P. caciantha Lundholm, Moestrup & Hasle, revealed 2.7% genetic divergence. Phylogenetic analyses strongly supported the monophyly of the morphotype. Based upon these supporting data it is here described as a new species, Pseudo-nitzschia circumpora sp. nov. A key to the six species of Pseudo-nitzschia from Malaysian Borneo is presented. Molecular signatures for all species were established based on structural comparisons of ITS2 rRNA transcripts.
  8. Huang CX, Dong HC, Lundholm N, Teng ST, Zheng GC, Tan ZJ, et al.
    Harmful Algae, 2019 Apr;84:195-209.
    PMID: 31128805 DOI: 10.1016/j.hal.2019.04.003
    In a field survey in the Taiwan Strait during April 2016, the species composition and the domoic acid production of the diatom genus Pseudo-nitzschia were investigated. A total of 80 strains of Pseudo-nitzschia were established, and species identification was determined based on a combination of morphological and molecular data. Fourteen taxa were recognized, i.e., P. americana, P. brasiliana, P. calliantha, P. cuspidata, P. galaxiae, P. lundholmiae, P. multiseries, P. multistriata, P. pseudodelicatissima, P. pungens var. aveirensis, P. pungenus var. pungens and P. sabit, as well as two novel species P. chiniana C.X. Huang & Yang Li and P. qiana C.X. Huang & Yang Li. Morphologically, P. chiniana is characterized by striae comprising one or two rows of poroids, and valve ends that are normally dominated by two rows of poroids within each stria. Whereas P. qiana is unique by having a narrow valve width (1.3-1.5 μm) and sharply pointed valve ends. Both taxa constitute their own monophyletic lineage in the phylogenetic analyses inferred from LSU and ITS2 rDNA, and are well differentiated from other Pseudo-nitzschia species. Pseudo-nitzschia chiniana forms a group with P. abrensis and P. batesiana in LSU and ITS trees, whereas P. qiana is sister to P. lineola. When comparing ITS2 secondary structure, five CBCs and seven HCBCs are recognized between P. chiniana and P. abrensis, and four CBCs and ten HCBCs between P. chiniana and P. batesiana. Two CBCs and eight HCBCs are found between P. qiana with P. lineola. The ability of the strains to produce domoic acid was assessed, including a potential toxin induction by the presence of brine shrimps. Results revealed production of domoic acid in six strains belonging to three species. Without presence of brine shrimps, cellular DA (pDA) was detected in four P. multiseries strains (1.6 ± 0.3, 26.6 ± 2.7, 68.3 ± 4.2 and 56.9 ± 4.7 fg cell-1, separately), one strain of P. pseudodelicatissima (0.8 ± 0.2 fg cell-1) and one strain of P. lundholmiae (2.5 ± 0.4 fg cell-1). In the presence of brine shrimps, pDA contents increased significantly (p 
  9. Lim HC, Tan SN, Teng ST, Lundholm N, Orive E, David H, et al.
    J Phycol, 2018 04;54(2):234-248.
    PMID: 29377161 DOI: 10.1111/jpy.12620
    Analyses of the mitochondrial cox1, the nuclear-encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo-nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I-III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo-nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence-structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links