Displaying all 9 publications

Abstract:
Sort:
  1. Petroff D, Blank V, Newsome PN, Shalimar, Voican CS, Thiele M, et al.
    Lancet Gastroenterol Hepatol, 2021 03;6(3):185-198.
    PMID: 33460567 DOI: 10.1016/S2468-1253(20)30357-5
    BACKGROUND: Diagnostic tools for liver disease can now include estimation of the grade of hepatic steatosis (S0 to S3). Controlled attenuation parameter (CAP) is a non-invasive method for assessing hepatic steatosis that has become available for patients who are obese (FibroScan XL probe), but a consensus has not yet been reached regarding cutoffs and its diagnostic performance. We aimed to assess diagnostic properties and identify relevant covariates with use of an individual patient data meta-analysis.

    METHODS: We did an individual patient data meta-analysis, in which we searched PubMed and Web of Science for studies published from database inception until April 30, 2019. Studies reporting original biopsy-controlled data of CAP for non-invasive grading of steatosis were eligible. Probe recommendation was based on automated selection, manual assessment of skin-to-liver-capsule distance, and a body-mass index (BMI) criterion. Receiver operating characteristic methods and mixed models were used to assess diagnostic properties and covariates. Patients with non-alcoholic fatty liver disease (NAFLD) were analysed separately because they are the predominant patient group when using the XL probe. This study is registered with PROSPERO, CRD42018099284.

    FINDINGS: 16 studies reported histology-controlled CAP including the XL probe, and individual data from 13 papers and 2346 patients were included. Patients with a mean age of 46·5 years (SD 14·5) were recruited from 20 centres in nine countries. 2283 patients had data for BMI; 673 (29%) were normal weight (BMI <25 kg/m2), 530 (23%) were overweight (BMI ≥25 to <30 kg/m2), and 1080 (47%) were obese (BMI ≥30 kg/m2). 1277 (54%) patients had NAFLD, 474 (20%) had viral hepatitis, 285 (12%) had alcohol-associated liver disease, and 310 (13%) had other liver disease aetiologies. The XL probe was recommended in 1050 patients, 930 (89%) of whom had NAFLD; among the patients with NAFLD, the areas under the curve were 0·819 (95% CI 0·769-0·869) for S0 versus S1 to S3 and 0·754 (0·720-0·787) for S0 to S1 versus S2 to S3. CAP values were independently affected by aetiology, diabetes, BMI, aspartate aminotransferase, and sex. Optimal cutoffs differed substantially across aetiologies. Risk of bias according to QUADAS-2 was low.

    INTERPRETATION: CAP cutoffs varied according to cause, and can effectively recognise significant steatosis in patients with viral hepatitis. CAP cannot grade steatosis in patients with NAFLD adequately, but its value in a NAFLD screening setting needs to be studied, ideally with methods beyond the traditional histological reference standard.

    FUNDING: The German Federal Ministry of Education and Research and Echosens.

  2. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, et al.
    J Hepatol, 2017 05;66(5):1022-1030.
    PMID: 28039099 DOI: 10.1016/j.jhep.2016.12.022
    BACKGROUND & AIMS: The prevalence of fatty liver underscores the need for non-invasive characterization of steatosis, such as the ultrasound based controlled attenuation parameter (CAP). Despite good diagnostic accuracy, clinical use of CAP is limited due to uncertainty regarding optimal cut-offs and the influence of covariates. We therefore conducted an individual patient data meta-analysis.

    METHODS: A review of the literature identified studies containing histology verified CAP data (M probe, vibration controlled transient elastography with FibroScan®) for grading of steatosis (S0-S3). Receiver operating characteristic analysis after correcting for center effects was used as well as mixed models to test the impact of covariates on CAP. The primary outcome was establishing CAP cut-offs for distinguishing steatosis grades.

    RESULTS: Data from 19/21 eligible papers were provided, comprising 3830/3968 (97%) of patients. Considering data overlap and exclusion criteria, 2735 patients were included in the final analysis (37% hepatitis B, 36% hepatitis C, 20% NAFLD/NASH, 7% other). Steatosis distribution was 51%/27%/16%/6% for S0/S1/S2/S3. CAP values in dB/m (95% CI) were influenced by several covariates with an estimated shift of 10 (4.5-17) for NAFLD/NASH patients, 10 (3.5-16) for diabetics and 4.4 (3.8-5.0) per BMI unit. Areas under the curves were 0.823 (0.809-0.837) and 0.865 (0.850-0.880) respectively. Optimal cut-offs were 248 (237-261) and 268 (257-284) for those above S0 and S1 respectively.

    CONCLUSIONS: CAP provides a standardized non-invasive measure of hepatic steatosis. Prevalence, etiology, diabetes, and BMI deserve consideration when interpreting CAP. Longitudinal data are needed to demonstrate how CAP relates to clinical outcomes.

    LAY SUMMARY: There is an increase in fatty liver for patients with chronic liver disease, linked to the epidemic of the obesity. Invasive liver biopsies are considered the best means of diagnosing fatty liver. The ultrasound based controlled attenuation parameter (CAP) can be used instead, but factors such as the underlying disease, BMI and diabetes must be taken into account. Registration: Prospero CRD42015027238.

  3. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, et al.
    Aliment Pharmacol Ther, 2018 Apr;47(7):989-1000.
    PMID: 29446106 DOI: 10.1111/apt.14529
    BACKGROUND: Liver fibrosis is often accompanied by steatosis, particularly in patients with non-alcoholic fatty liver disease (NAFLD), and its non-invasive characterisation is of utmost importance. Vibration-controlled transient elastography is the non-invasive method of choice; however, recent research suggests that steatosis may influence its diagnostic performance. Controlled Attenuation Parameter (CAP) added to transient elastography enables simultaneous assessment of steatosis and fibrosis.

    AIM: To determine how to use CAP in interpreting liver stiffness measurements.

    METHODS: This is a secondary analysis of data from an individual patient data meta-analysis on CAP. The main exclusion criteria for the current analysis were unknown aetiology, unreliable elastography measurement and data already used for the same research question. Aetiology-specific liver stiffness measurement cut-offs were determined and used to estimate positive and negative predictive values (PPV/NPV) with logistic regression as functions of CAP.

    RESULTS: Two thousand and fifty eight patients fulfilled the inclusion criteria (37% women, 18% NAFLD/NASH, 42% HBV, 40% HCV, 51% significant fibrosis ≥ F2). Youden optimised cut-offs were only sufficient for ruling out cirrhosis (NPV of 98%). With sensitivity and specificity-optimised cut-offs, NPV for ruling out significant fibrosis was moderate (70%) and could be improved slightly through consideration of CAP. PPV for significant fibrosis and cirrhosis were 68% and 55% respectively, despite specificity-optimised cut-offs for cirrhosis.

    CONCLUSIONS: Liver stiffness measurement values below aetiology-specific cut-offs are very useful for ruling out cirrhosis, and to a lesser extent for ruling out significant fibrosis. In the case of the latter, Controlled Attenuation Parameter can improve interpretation slightly. Even if cut-offs are very high, liver stiffness measurements are not very reliable for ruling in fibrosis or cirrhosis.

  4. Pennisi G, Enea M, Falco V, Aithal GP, Palaniyappan N, Yilmaz Y, et al.
    Hepatology, 2023 Jul 01;78(1):195-211.
    PMID: 36924031 DOI: 10.1097/HEP.0000000000000351
    BACKGROUND AND AIMS: We evaluated the diagnostic accuracy of simple, noninvasive tests (NITs) in NAFLD patients with type 2 diabetes (T2D).

    METHODS AND RESULTS: This was an individual patient data meta-analysis of 1780 patients with biopsy-proven NAFLD and T2D. The index tests of interest were FIB-4, NAFLD Fibrosis Score (NFS), aspartate aminotransferase-to-platelet ratio index, liver stiffness measurement (LSM) by vibration-controlled transient elastography, and AGILE 3+. The target conditions were advanced fibrosis, NASH, and fibrotic NASH(NASH plus F2-F4 fibrosis). The diagnostic performance of noninvasive tests. individually or in sequential combination, was assessed by area under the receiver operating characteristic curve and by decision curve analysis. Comparison with 2278 NAFLD patients without T2D was also made. In NAFLD with T2D LSM and AGILE 3+ outperformed, both NFS and FIB-4 for advanced fibrosis (area under the receiver operating characteristic curve:LSM 0.82, AGILE 3+ 0.82, NFS 0.72, FIB-4 0.75, aspartate aminotransferase-to-platelet ratio index 0.68; p < 0.001 of LSM-based versus simple serum tests), with an uncertainty area of 12%-20%. The combination of serum-based with LSM-based tests for advanced fibrosis led to a reduction of 40%-60% in necessary LSM tests. Decision curve analysis showed that all scores had a modest net benefit for ruling out advanced fibrosis at the risk threshold of 5%-10% of missing advanced fibrosis. LSM and AGILE 3+ outperformed both NFS and FIB-4 for fibrotic NASH (area under the receiver operating characteristic curve:LSM 0.79, AGILE 3+ 0.77, NFS 0.71, FIB-4 0.71; p < 0.001 of LSM-based versus simple serum tests). All noninvasive scores were suboptimal for diagnosing NASH.

    CONCLUSIONS: LSM and AGILE 3+ individually or in low availability settings in sequential combination after FIB-4 or NFS have a similar good diagnostic accuracy for advanced fibrosis and an acceptable diagnostic accuracy for fibrotic NASH in NAFLD patients with T2D.

  5. Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, et al.
    Hepatol Int, 2023 Aug;17(4):773-791.
    PMID: 37204656 DOI: 10.1007/s12072-023-10543-8
    BACKGROUND: Fatty liver disease in the absence of excessive alcohol consumption is an increasingly common condition with a global prevalence of ~ 25-30% and is also associated with cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies its pathogenesis, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been proposed for this condition. MAFLD is closely intertwined with obesity, type 2 diabetes mellitus and atherogenic dyslipidemia, which are established cardiovascular risk factors. Unlike CVD, which has received attention in the literature on fatty liver disease, the CVD risk associated with MAFLD is often underestimated, especially among Cardiologists.

    METHODS AND RESULTS: A multidisciplinary panel of fifty-two international experts comprising Hepatologists, Endocrinologists, Diabetologists, Cardiologists and Family Physicians from six continents (Asia, Europe, North America, South America, Africa and Oceania) participated in a formal Delphi survey and developed consensus statements on the association between MAFLD and the risk of CVD. Statements were developed on different aspects of CVD risk, ranging from epidemiology to mechanisms, screening, and management.

    CONCULSIONS: The expert panel identified important clinical associations between MAFLD and the risk of CVD that could serve to increase awareness of the adverse metabolic and cardiovascular outcomes of MAFLD. Finally, the expert panel also suggests potential areas for future research.

  6. Zeng XF, Varady KA, Wang XD, Targher G, Byrne CD, Tayyem R, et al.
    Metabolism, 2024 Dec;161:156028.
    PMID: 39270816 DOI: 10.1016/j.metabol.2024.156028
    Metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of chronic liver disease worldwide. Optimal dietary intervention strategies for MAFLD are not standardized. This study aimed to achieve consensus on prevention of MAFLD through dietary modification. A multidisciplinary panel of 55 international experts, including specialists in hepatology, gastroenterology, dietetics, endocrinology and other medical specialties from six continents collaborated in a Delphi-based consensus development process. The consensus statements covered aspects ranging from epidemiology to mechanisms, management, and dietary recommendations for MAFLD. The recommended dietary strategies emphasize adherence to a balanced diet with controlled energy intake and personalized nutritional interventions, such as calorie restriction, high-protein, or low-carbohydrate diets. Specific dietary advice encouraged increasing the consumption of whole grains, plant-based proteins, fish, seafood, low-fat or fat-free dairy products, liquid plant oils, and deeply colored fruits and vegetables. Concurrently, it advised reducing the intake of red and processed meats, saturated and trans fats, ultra-processed foods, added sugars, and alcohol. Additionally, maintaining the Mediterranean or DASH diet, minimizing sedentary behavior, and engaging in regular physical activity are recommended. These consensus statements lay the foundation for customized dietary guidelines and proposing avenues for further research on nutrition and MAFLD.
  7. Zhang L, El-Shabrawi M, Baur LA, Byrne CD, Targher G, Kehar M, et al.
    Med, 2024 Jul 12;5(7):797-815.e2.
    PMID: 38677287 DOI: 10.1016/j.medj.2024.03.017
    BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts.

    METHODS: A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management.

    FINDINGS: In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD.

    CONCLUSIONS: The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD.

    FUNDING: This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).

  8. Feng G, Mózes FE, Ji D, Treeprasertsuk S, Okanoue T, Shima T, et al.
    PMID: 39362618 DOI: 10.1016/j.cgh.2024.07.045
    BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) and fibrotic MASH are significant health challenges. This multi-national study aimed to validate the acMASH index (including serum creatinine and aspartate aminotransferase concentrations) for MASH diagnosis and develop a new index (acFibroMASH) for non-invasively identifying fibrotic MASH and exploring its predictive value for liver-related events (LREs).

    METHODS: We analyzed data from 3004 individuals with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) across 29 Chinese and 9 international cohorts to validate the acMASH index and develop the acFibroMASH index. Additionally, we utilized the independent external data from a multi-national cohort of 9034 patients with MASLD to examine associations between the acFibroMASH index and the risk of LREs.

    RESULTS: In the pooled global cohort, the acMASH index identified MASH with an area under the receiver operating characteristic curve (AUROC) of 0.802 (95% confidence interval [CI], 0.786-0.818). The acFibroMASH index (including the acMASH index plus liver stiffness measurement) accurately identified fibrotic MASH with an AUROC of 0.808 in the derivation cohort and 0.800 in the validation cohort. Notably, the AUROC for the acFibroMASH index was 0.835 (95% CI, 0.786-0.882), superior to that of the FAST score at 0.750 (95% CI, 0.693-0.800; P < .01) in predicting the 5-year risk of LREs. Patients with acFibroMASH >0.39 had a higher risk of LREs than those with acFibroMASH <0.15 (adjusted hazard ratio, 11.23; 95% CI, 3.98-31.66).

    CONCLUSIONS: This multi-ethnic study validates the acMASH index as a reliable, noninvasive test for identifying MASH. The newly proposed acFibroMASH index is a reliable test for identifying fibrotic MASH and predicting the risk of LREs.

  9. Zhang H, Targher G, Byrne CD, Kim SU, Wong VW, Valenti L, et al.
    Hepatol Int, 2024 Aug;18(4):1178-1201.
    PMID: 38878111 DOI: 10.1007/s12072-024-10702-5
    BACKGROUND: With the implementation of the 11th edition of the International Classification of Diseases (ICD-11) and the publication of the metabolic dysfunction-associated fatty liver disease (MAFLD) nomenclature in 2020, it is important to establish consensus for the coding of MAFLD in ICD-11. This will inform subsequent revisions of ICD-11.

    METHODS: Using the Qualtrics XM and WJX platforms, questionnaires were sent online to MAFLD-ICD-11 coding collaborators, authors of papers, and relevant association members.

    RESULTS: A total of 890 international experts in various fields from 61 countries responded to the survey. We also achieved full coverage of provincial-level administrative regions in China. 77.1% of respondents agreed that MAFLD should be represented in ICD-11 by updating NAFLD, with no significant regional differences (77.3% in Asia and 76.6% in non-Asia, p = 0.819). Over 80% of respondents agreed or somewhat agreed with the need to assign specific codes for progressive stages of MAFLD (i.e. steatohepatitis) (92.2%), MAFLD combined with comorbidities (84.1%), or MAFLD subtypes (i.e., lean, overweight/obese, and diabetic) (86.1%).

    CONCLUSIONS: This global survey by a collaborative panel of clinical, coding, health management and policy experts, indicates agreement that MAFLD should be coded in ICD-11. The data serves as a foundation for corresponding adjustments in the ICD-11 revision.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links