A process that involves the registration of two brain Magnetic Resonance Imaging (MRI) acquisitions is proposed for the subtraction between previous and current images at two different follow-up (FU) time points. Brain tumours can be non-cancerous (benign) or cancerous (malignant). Treatment choices for these conditions rely on the type of brain tumour as well as its size and location. Brain cancer is a fast-spreading tumour that must be treated in time. MRI is commonly used in the detection of early signs of abnormality in the brain area because it provides clear details. Abnormalities include the presence of cysts, haematomas or tumour cells. A sequence of images can be used to detect the progression of such abnormalities. A previous study on conventional (CONV) visual reading reported low accuracy and speed in the early detection of abnormalities, specifically in brain images. It can affect the proper diagnosis and treatment of the patient. A digital subtraction technique that involves two images acquired at two interval time points and their subtraction for the detection of the progression of abnormalities in the brain image was proposed in this study. MRI datasets of five patients, including a series of brain images, were retrieved retrospectively in this study. All methods were carried out using the MATLAB programming platform. ROI volume and diameter for both regions were recorded to analyse progression details, location, shape variations and size alteration of tumours. This study promotes the use of digital subtraction techniques on brain MRIs to track any abnormality and achieve early diagnosis and accuracy whilst reducing reading time. Thus, improving the diagnostic information for physicians can enhance the treatment plan for patients.
Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.