Displaying all 2 publications

Abstract:
Sort:
  1. Rusydi F, Madinah R, Puspitasari I, Mark-Lee WF, Ahmad A, Rusydi A
    Biochem Mol Biol Educ, 2021 03;49(2):216-227.
    PMID: 32897655 DOI: 10.1002/bmb.21433
    The fundamental mechanism of biochemistry lies on the reaction kinetics, which is determined by the reaction pathways. Interestingly, the reaction pathway is a challenging concept for undergraduate students. Experimentally, it is difficult to observe, and theoretically, it requires some degree of physics knowledge, namely statistical and quantum mechanics. However, students can utilize computational methods to study the reaction kinetics without paying too much attention but not wholly neglecting the comprehension of physics. We hereby provided an approach to study the reaction kinetics based on density-functional calculations. We particularized the study of the isomerization case involving five molecules at three different temperatures and emphasized the importance of the transition state in the study of reaction kinetics. The results we presented were in good agreement with the experiments and provided useful insights to assist students in the application of their knowledge into their research.
  2. Madinah R, Rusydi F, Fadilla RN, Khoirunisa V, Boli LSP, Saputro AG, et al.
    ACS Omega, 2023 Sep 19;8(37):34022-34033.
    PMID: 37744805 DOI: 10.1021/acsomega.3c04907
    Noncovalent interactions, such as dispersion, play a significant role in the stability of flexible molecules, such as curcumin. This study revealed the importance of dispersion correction in the structure and keto-enol tautomerization of curcumin, which has rarely been addressed in computational studies. We rigorously constructed all possible unique curcumin conformers in the enol and keto forms within the first-principles framework. Regardless of the different environments, we carefully explained the agreement between the computational geometry (in the gas phase) and the experimental measurement (in the polymorph) by using dispersion correction. The calculation results for the aqueous solution of conformational abundance, thermochemistry, and reaction kinetics support the experimental observations after considering the dispersion correction. The study also suggests a water-catalyzed mechanism for keto-enol tautomerization, where dispersion correction plays a role in decreasing the energy barrier and making the keto form thermochemically and kinetically favorable. Our results could be helpful in future computational studies to find a method for increasing the aqueous solubility of curcumin; hence, the potential of curcumin as a multifunctional medicine can be fully achieved.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links