Displaying all 6 publications

  1. S Gowda VB, Nagaiah BH, Sengodan B
    Biochem Mol Biol Educ, 2016 Mar 4;44(2):202-7.
    PMID: 26914989 DOI: 10.1002/bmb.20936
    Medical students build clinical knowledge on the grounds of previously obtained basic knowledge. The study aimed to evaluate the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained during year 1 and 2 of undergraduate medical training. Study was conducted on year 3 MBBS students at AIMST University, Malaysia. Clinical scenarios (25) were constructed and administered to student volunteers, making sure at least one question from each system of year 2 was represented. Feedback was obtained on a five-point Likert scale regarding perception of learning biochemistry in MBBS year 1 versus 2. Mean score of test was 18 (72.11%). Performance was comparatively better in questions related to topics learnt in year 1 and reinforced in year 2 compared to those learnt for first time in year 2. In the feedback obtained, 31% strongly agreed and 56% agreed understanding the subject was helped more by learning biochemistry in year 2 than in year 1. Likewise, 36% strongly agreed and 56% agreed appreciating the importance of biochemistry in patient diagnosis was helped more by learning biochemistry in year 2 than year 1. Thirty one percent strongly agreed and 54% agreed that year 1 biochemistry would have been more relevant if case discussions were done simultaneously. Students retain basic science subjects better and appreciate the importance of basic sciences in patient diagnosis if they are reinforced in the context of clinical situations. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:202-207, 2016.
  2. Selvarajah G, Selvarajah S
    Biochem Mol Biol Educ, 2016 07 08;44(4):381-90.
    PMID: 26899144 DOI: 10.1002/bmb.20964
    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and computer-animated video, we included a model building activity using pipe cleaners. Biotechnology undergraduates (n = 108) used the model to simulate Holliday junction and heteroduplex formation, and Holliday junction resolution. Based on student perception, an average of 12.85 and 78.35% students claimed that they completely and partially understood the two concepts, respectively. A test conducted to ascertain their understanding about the two concepts showed that 66.1% of the students provided the correct response to the three multiple choice questions. A majority of the 108 students attributed the inclusion of model building to their better understanding of Holliday junction and heteroduplex formation, and Holliday junction resolution. This underlines the importance of incorporating model building, particularly in concepts that require spatial visualization. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):381-390, 2016.
  3. Mohd Saruan N, Sagran A, Fadzil KS, Razali Z, Ow Phui San R, Somasundram C
    Biochem Mol Biol Educ, 2015 Nov-Dec;43(6):460-7.
    PMID: 26525315 DOI: 10.1002/bmb.20892
    The recent growth of biotechnology requires a wide range of expertise within the industry. Education is the primary platform for students to gain information and knowledge on biotechnology. In Malaysia where biotechnology is relatively new, education programs and courses must be tailored to meet the demands of the industry. A combination of theoretical knowledge as well as practical and industrial training is essential to ensure graduates are prepared for their career in the fields of biotechnology. Results from this study show that university students lack literacy on biotechnology information and access to facilities provided by the universities. This may be a significant contributing factor to the lack of knowledge and information amongst graduates. Furthermore comparative analysis on the biotechnology program in Malaysian universities with that of other countries show the need to restructure the program by offering more specialized courses as well as soft skills and business subjects. This is to meet the demands of the related professionals as well as the various branches that exist in the biotechnology industry.
  4. Yeo BPH, Foong LC, Tam SM, Lee V, Hwang SS
    Biochem Mol Biol Educ, 2018 01;46(1):47-53.
    PMID: 29131478 DOI: 10.1002/bmb.21089
    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the isolation and characterization of many plant resistance gene analogues (RGAs), is featured in the development of a series of laboratory experiments using important molecular biology techniques. A set of previously isolated RGA sequences is used as the model for performing sequence alignment and visualising 3D protein structure using current bioinformatics programs (Clustal Omega and Argusdock software). A pair of established degenerate primer sequences is provided for the prediction of targeted amino acids sequences in the RGAs. Reverse transcription-polymerase chain reaction (RT-PCR) is used to amplify RGAs from total RNA samples extracted from the tropical wild relative of black pepper, Piper colubrinum (Piperaceae). This laboratory exercise enables students to correlate specific DNA sequences with respective amino acid codes and the interaction between conserved motifs of resistance genes with putatively targeted proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):47-53, 2018.
  5. Roslan AA, Tayyab S
    Biochem Mol Biol Educ, 2019 03;47(2):156-160.
    PMID: 30629781 DOI: 10.1002/bmb.21207
    A laboratory exercise on the interaction between the herbicide pendimethalin (PM) and goat serum albumin (GSA), a carrier protein present in mammalian blood circulation, is described. Fluorescence spectroscopy was used to study the binding reaction between PM and GSA. Titration of a constant amount of the protein (GSA) with increasing ligand (PM) concentrations produced a consecutive decrease in the protein's fluorescence. Treatment of the fluorescence quenching data according to the Stern-Volmer equation yielded the values of the Stern-Volmer constant (Ksv ) and bimolecular quenching rate constant (kq ), whereas values of the binding constant (Ka ) and number of binding sites (n) were obtained from the double logarithmic plot. This experiment provides an exciting opportunity for undergraduate students to independently perform ligand binding studies with a protein, in addition to providing the means for the determination of their binding parameters. © 2019 International Union of Biochemistry and Molecular Biology, 47(2): 156-160, 2019.
  6. Dash S
    Biochem Mol Biol Educ, 2019 07;47(4):404-407.
    PMID: 30994974 DOI: 10.1002/bmb.21246
    Medical education has adopted various e-learning technologies to its aid. Addition of Google Classroom, introduced in 2014, as a Learning Management System (LMS) has provided a basic, easy to use platform. This study tested its efficacy in teaching a biochemistry module to first year MBBS students in an Indian medical school. Better access to learning material and supplementary teaching resources, helpfulness of immediate feedback, and learning outside of class environment were reported by students. Preference of mobile phone over laptop to access this LMS was reported. Use of this free to use LMS can be made, and especially in resource limited low and middle income countries, to encourage greater access to e-learning. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):404-407, 2019.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links